--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-IEMOCAP_2 results: [] --- # videomae-base-finetuned-IEMOCAP_2 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3381 - Accuracy: 0.3434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3215 | 0.1 | 451 | 1.4351 | 0.2622 | | 1.3236 | 1.1 | 902 | 1.3517 | 0.3579 | | 1.2642 | 2.1 | 1353 | 1.4280 | 0.2982 | | 1.2741 | 3.1 | 1804 | 1.3943 | 0.3012 | | 1.2655 | 4.1 | 2255 | 1.3665 | 0.3311 | | 1.1476 | 5.1 | 2706 | 1.3808 | 0.3293 | | 1.2231 | 6.1 | 3157 | 1.3216 | 0.3573 | | 1.2715 | 7.1 | 3608 | 1.3162 | 0.3720 | | 1.3088 | 8.1 | 4059 | 1.2985 | 0.3982 | | 1.2636 | 9.1 | 4500 | 1.2666 | 0.4098 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3