--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 인체모형 교육용 해부 해부학 마네킹 해골 뼈 업그레이드된버전62CM색상흰색남성모델찌를수있음 에스와이컴퍼니 - text: 고급 패브릭정리함 리빙박스 트윈커버 소형 기안79 - text: 거치대 대회 전시 진열 태권도 트로피 메달 스포츠 디스플레이 선반 가로 120 세로 20센티_라이트 텍스처 나무판자 색상표:오색 라인 프레즈스튜디오 - text: 투명 조립식 신발장 신발 정리대 수납장 보관함 민트 살림공백 - text: 고양이 철제 실내화 정리대 슬리퍼 꽂이 걸이 거치대 현관 화장실 현관 홀더 슈즈렉 4단 고양이 실내화거치대_화이트 티비앤지컴퍼니 (TB&G Co.) inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.937399876771411 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 3.0 | | | 4.0 | | | 7.0 | | | 2.0 | | | 1.0 | | | 0.0 | | | 5.0 | | | 8.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9374 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh14") # Run inference preds = model("고급 패브릭정리함 리빙박스 트윈커버 소형 기안79") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.5244 | 22 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0141 | 1 | 0.3887 | - | | 0.7042 | 50 | 0.3275 | - | | 1.4085 | 100 | 0.1223 | - | | 2.1127 | 150 | 0.0307 | - | | 2.8169 | 200 | 0.0273 | - | | 3.5211 | 250 | 0.0253 | - | | 4.2254 | 300 | 0.0097 | - | | 4.9296 | 350 | 0.0156 | - | | 5.6338 | 400 | 0.0156 | - | | 6.3380 | 450 | 0.0175 | - | | 7.0423 | 500 | 0.0136 | - | | 7.7465 | 550 | 0.0117 | - | | 8.4507 | 600 | 0.002 | - | | 9.1549 | 650 | 0.0174 | - | | 9.8592 | 700 | 0.0155 | - | | 10.5634 | 750 | 0.0136 | - | | 11.2676 | 800 | 0.0193 | - | | 11.9718 | 850 | 0.0135 | - | | 12.6761 | 900 | 0.0004 | - | | 13.3803 | 950 | 0.0001 | - | | 14.0845 | 1000 | 0.0001 | - | | 14.7887 | 1050 | 0.0001 | - | | 15.4930 | 1100 | 0.0 | - | | 16.1972 | 1150 | 0.0 | - | | 16.9014 | 1200 | 0.0 | - | | 17.6056 | 1250 | 0.0 | - | | 18.3099 | 1300 | 0.0 | - | | 19.0141 | 1350 | 0.0 | - | | 19.7183 | 1400 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```