--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: COLOR WOW Xtra 대형 봄쉘 볼류마이저 6.5 Ounce 6.5 Ounce 모모나미 - text: 헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04 - text: 메온셀 GRAFEN 다운펌약 남자다운펌 옆머리누르기 셀프매직약 A 세일몬스터 - text: '[6월7일 이후 배송] 브리티시엠 어반 매트 클레이 100g / URBAN MATTE CLAY 헤어 왁스 미용실 강력 짧은머리 고정 남자머리 셋팅 선택X (파우치 필요없어요) (주)컨템포' - text: Aveda Phomollient Styling Foam 6.7 oz (관부가세포함) 옵션없음 제이글로벌컴퍼니 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7192224622030238 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 3.0 | | | 4.0 | | | 1.0 | | | 5.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7192 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test") # Run inference preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 5 | 9.4957 | 26 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 25 | | 1.0 | 19 | | 2.0 | 15 | | 3.0 | 25 | | 4.0 | 19 | | 5.0 | 14 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0714 | 1 | 0.4886 | - | | 3.5714 | 50 | 0.3088 | - | | 7.1429 | 100 | 0.049 | - | | 10.7143 | 150 | 0.0043 | - | | 14.2857 | 200 | 0.0001 | - | | 17.8571 | 250 | 0.0001 | - | | 21.4286 | 300 | 0.0001 | - | | 25.0 | 350 | 0.0001 | - | | 28.5714 | 400 | 0.0001 | - | | 32.1429 | 450 | 0.0001 | - | | 35.7143 | 500 | 0.0001 | - | | 39.2857 | 550 | 0.0001 | - | | 42.8571 | 600 | 0.0001 | - | | 46.4286 | 650 | 0.0001 | - | | 50.0 | 700 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```