---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: COLOR WOW Xtra 대형 봄쉘 볼류마이저 6.5 Ounce 6.5 Ounce 모모나미
- text: 헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04
- text: 메온셀 GRAFEN 다운펌약 남자다운펌 옆머리누르기 셀프매직약 A 세일몬스터
- text: '[6월7일 이후 배송] 브리티시엠 어반 매트 클레이 100g / URBAN MATTE CLAY 헤어 왁스 미용실 강력 짧은머리 고정
남자머리 셋팅 선택X (파우치 필요없어요) (주)컨템포'
- text: Aveda Phomollient Styling Foam 6.7 oz (관부가세포함) 옵션없음 제이글로벌컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7192224622030238
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 |
- 'MANIC PANIC 매닉 패닉 Bad Boy Blue 배드 보이 블루 옵션없음 제이(J) 커머스'
- '미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'
- '376252 씨드비 물염색 시즌2 씨비드 4회분 미디엄브라운 NEW 비건 미디엄 브라운 1박스_◈232431989◈ 제이제이홀딩스'
|
| 3.0 | - '로레알 테크니아트 픽스 디자인 스프레이 200ml 옵션없음 파스텔뷰티'
- '과일나라 컨퓸 슈퍼하드 워터스프레이 252ml 옵션없음 다인유통'
- '폴미첼 프리즈 앤 슈퍼 샤인 스프레이 250ml 옵션없음 다사다 유한책임회사'
|
| 4.0 | - '미쟝센 파워스윙 슈퍼하드 크림 왁스 9 미디움 리젠트업 80g 옵션없음 와라즈'
- 'Loma Hair Care 3525927124 LOMA 포밍 페이스트 85g(3온스) 옵션없음 넥스유로(NEXEURO)'
- '차홍 왁스 쉬폰 소프트 80ml 부드러운 크림제형 옵션없음 박예찬'
|
| 1.0 | - '모레모 케라틴 셀프 다운 펌 6개 100g 옵션없음 건강드림'
- '다주자 울트라 다운펌150ml 남자다운펌 여성매직펌 잔머리펌 다운펌set 옵션없음 포비티엘'
- '미용실 다운펌약 집에서 옆머리 누르기 올리브영 악성곱슬 남자 셀프 다운펌 옵션없음 새벽 마트'
|
| 5.0 | - '꽃을든남자 초강력헤어젤 500ml 옵션없음 태은코리아'
- 'lg생활건강 아르드포 헤어젤 펌프형 300ml 옵션없음 맥센 트레이드'
- 'Ecoco 에코 스타일러 크리스탈 스타일링 젤 453g (3팩) 옵션없음 세렌몰1'
|
| 2.0 | - '밀본 니제르 클러치피즈 하이 클러치피즈 200g 헤어무스 헤어팟'
- '갸스비 수퍼하드 스타일링폼 무스 185ml 홈쇼핑 동일상품 수퍼하드 스타일링폼 무스 185ml 제이에스유통'
- '꽃을든남자 스타일링 헤어 무스 300ml 퀸뷰티'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7192 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test")
# Run inference
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 9.4957 | 26 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 25 |
| 1.0 | 19 |
| 2.0 | 15 |
| 3.0 | 25 |
| 4.0 | 19 |
| 5.0 | 14 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0714 | 1 | 0.4886 | - |
| 3.5714 | 50 | 0.3088 | - |
| 7.1429 | 100 | 0.049 | - |
| 10.7143 | 150 | 0.0043 | - |
| 14.2857 | 200 | 0.0001 | - |
| 17.8571 | 250 | 0.0001 | - |
| 21.4286 | 300 | 0.0001 | - |
| 25.0 | 350 | 0.0001 | - |
| 28.5714 | 400 | 0.0001 | - |
| 32.1429 | 450 | 0.0001 | - |
| 35.7143 | 500 | 0.0001 | - |
| 39.2857 | 550 | 0.0001 | - |
| 42.8571 | 600 | 0.0001 | - |
| 46.4286 | 650 | 0.0001 | - |
| 50.0 | 700 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```