--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: toxigen-distilbert-binary-clsf results: [] datasets: - toxigen/toxigen-data language: - en pipeline_tag: text-classification --- # toxigen-distilbert-binary-clsf This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Precision: 0.9999 - Recall: 0.9999 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 0.0 | 1.0 | 3137 | 0.0001 | 0.9999 | 0.9999 | 0.9999 | | 0.0 | 2.0 | 6274 | 0.0001 | 0.9999 | 0.9999 | 0.9999 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1