--- license: apache-2.0 base_model: albert/albert-base-v1 tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: toxigen-albert-binary-clsf results: [] datasets: - toxigen/toxigen-data --- [Visualize in Weights & Biases](https://wandb.ai/octoopt/huggingface/runs/39ugf5uc) # toxigen-albert-binary-clsf This model is a fine-tuned version of [albert/albert-base-v1](https://huggingface.co/albert/albert-base-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0000 - Recall: 1.0000 - Accuracy: 1.0000 ## Model description More information needed ## Intended uses & limitations Finetuning `albert/albert-base-v1` on the `toxigen/toxigen-data` dataset on the task of binary classfication. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 0.0 | 1.0 | 3137 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | | 0.0001 | 2.0 | 6274 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1