{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9df75b1480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694226342207466722, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZBvD3sNaQ/kwN5PnbW0r55F7I9UAFUPQAAAAAAAAAAmrU7vnqKoT9K2/i+JrkAv+p6tb4zqDG+AAAAAAAAAAAz0/Y6DdGJP63iS7ps3NC+v4wEvD1e1TwAAAAAAAAAAJq32T0UDU4+XiTRvRe0gb59FTI8VVZnvQAAAAAAAAAA5riIvRS+i7qnIzK4ou0ms1W0DLsoB083AACAPwAAgD8AlxU9z2SDPpbc3r39R4O+SSaevIv1CDwAAAAAAAAAADMvtTwFs5+7gupzvVm0+L3Rv5C8W/2lvgAAgD8AAIA/mqS6PR9F8bn1Dm46GooFNrLQfDsxqoq5AAAAAAAAgD/mfCg9SP+WukFgH7hvRt+yvZWTOrLPNzcAAIA/AACAP5oDbL1cGwa6tHkEvJQXArsHiUU7rP8GvAAAAAAAAIA/Vu6SPqtBUD/QSK493oXXvgztdT7Kuyu+AAAAAAAAAABN1jU9XCcSutaJUzO1ShWw6683u2JA0LMAAIA/AACAP+bNVz1cQwu64oWDszvs8q5XmN46/ru1MwAAgD8AAIA/GuDjPUH+mj6cGJG9r36SvkBdkz2MlBw9AAAAAAAAAACN7Ms977tNPXiVU77lxGq+yDE2PCDvVD0AAAAAAAAAAEbFqT42jhA/BjQmvsX7qb6vT7A9G+RmvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9CKvV3ECMAWyUTRcBjAF0lEdAnVo+ieumrXV9lChoBkdAcGaDV6NVBGgHTQQBaAhHQJ1bWv3ai9J1fZQoaAZHQHFNxEWqLjxoB01NAWgIR0CdXA7wazeGdX2UKGgGR0Bw2G6e5Fw2aAdNHQFoCEdAnVwxew9q13V9lChoBkdAcVKygf2bomgHTSUBaAhHQJ1cK/etSyd1fZQoaAZHQHINypWFN+NoB01bAWgIR0CdXWznRsuWdX2UKGgGR0ByZ4XGff4zaAdNDgFoCEdAnV2RvrGBF3V9lChoBkdAcBQNZ/0/W2gHTQgBaAhHQJ1d1krf+CN1fZQoaAZHQHHG1hLGrCFoB0vpaAhHQJ1fabUgB911fZQoaAZHQG5VKAjIJZ5oB00SAWgIR0CdYDvbXYlIdX2UKGgGR0BwmEJNTLntaAdNCQFoCEdAnWCNt2s7uHV9lChoBkdAcqlVHWjGk2gHS/RoCEdAnWEmBSUC73V9lChoBkdAcoNukUKzA2gHTawBaAhHQJ1hr8Nx2jh1fZQoaAZHQHFDGs3hn8NoB00mAWgIR0CdYc7/n4fwdX2UKGgGR0BwLzAKv3ajaAdNLgFoCEdAnWQ3buc+aHV9lChoBkdAbmQsPJ7swGgHS/loCEdAnWQ81jy4F3V9lChoBkdAcu4OFg2If2gHTREBaAhHQJ1kWThYNiJ1fZQoaAZHQHFVETcqOLloB00JAWgIR0CdZO+9Jz1cdX2UKGgGR0BytHXQMQVcaAdNFgFoCEdAnWVY2fkFOnV9lChoBkdAcFJH58BuGmgHTVkBaAhHQJ1laJvYODt1fZQoaAZHQHEHuCsfaHtoB0v6aAhHQJ1lz0I1LrZ1fZQoaAZHQG7q+6Zpi7VoB00AAWgIR0CdZimz0HyFdX2UKGgGR0BwaLCuU2UCaAdNIwFoCEdAnWeAxrSE13V9lChoBkdAcQEVJL/S6WgHTSQBaAhHQJ1pY5fdAPd1fZQoaAZHQHFn/M0P6KtoB00WAWgIR0CdacG2CulodX2UKGgGR0BwxB/Ue+23aAdNFwFoCEdAnWox/qgRLHV9lChoBkdAbtf3ueBg/mgHTUIBaAhHQJ1ufgqEvkB1fZQoaAZHQHClgB1cMVloB0v6aAhHQJ1ujd43WFx1fZQoaAZHQHGU9HhCMP1oB00IAWgIR0CdcEh/RVp9dX2UKGgGR0By2cbuMMqjaAdNYAFoCEdAnXB+twJgLXV9lChoBkdAcWmtVaOghGgHTSsBaAhHQJ1xMQGwA2h1fZQoaAZHQHFfmCI1tO5oB00BAWgIR0CdcYK8+RozdX2UKGgGR0BwaTPTodMkaAdNAgFoCEdAnXIi39aUzXV9lChoBkdAcTFdeIEbHmgHTQEBaAhHQJ10lY9xIat1fZQoaAZHQG2a8BU70WdoB01HAWgIR0CddKeS0Sh8dX2UKGgGR0BxmXQokRjCaAdNSQFoCEdAnXTU29+PR3V9lChoBkdAYKuBRyfcvmgHTegDaAhHQJ11zdAPd2x1fZQoaAZHQHM4QjdHlOpoB02MAWgIR0CddpGpda+wdX2UKGgGR0BzMnAO8TSLaAdNOQFoCEdAnXrLeIl+mXV9lChoBkdAcBfiBGx2S2gHS/hoCEdAnXwWbTc7AHV9lChoBkdAccr1Muez2WgHTU8BaAhHQJ18oumJm/Z1fZQoaAZHQHAPjRIBikRoB0v+aAhHQJ1+VQaaTfR1fZQoaAZHQHI2jC53C9BoB00XAWgIR0CdgJNRFZxJdX2UKGgGR0BxD/a24NI9aAdNTQFoCEdAnYEX1FpfyHV9lChoBkdAcQVj2Bas62gHTQABaAhHQJ2CXkBCD291fZQoaAZHQG+5vo3aSLZoB0v/aAhHQJ2ChXzUZvV1fZQoaAZHQHC7skdFOO9oB01kAWgIR0CdlBlMAWBSdX2UKGgGR0BxgHt/nW8RaAdNGAFoCEdAnZQVNtZV43V9lChoBkdAczH9pRGc4GgHTVEBaAhHQJ2UoxXXAdp1fZQoaAZHQHKkq8tf5UNoB01nAWgIR0CdlQSNwR5DdX2UKGgGR0BvUmHUMG5daAdNOQFoCEdAnZZ+az/p+3V9lChoBkdAcC1O5avA5GgHTVQBaAhHQJ2W3wKBuoB1fZQoaAZHQHGMpTyauwJoB00HAWgIR0Cdl46XBxgidX2UKGgGR0ByWlMIu5BkaAdNDgFoCEdAnZjffXPJJXV9lChoBkdAckdSteUpu2gHTQUBaAhHQJ2ZlqASWZ91fZQoaAZHQHJ+I55qubJoB00/AWgIR0CdmkYnfEXMdX2UKGgGR0BwyUstkFwDaAdL8GgIR0CdmnZOzposdX2UKGgGR0BxtD6GgzxgaAdNHQFoCEdAnZvEfs/puHV9lChoBkdAbrYPRRdhRmgHTQYBaAhHQJ2cd4MWoFV1fZQoaAZHQHKdY3WFvhtoB00AAWgIR0CdnRAYpDu0dX2UKGgGR0BxmI+wC8vmaAdNAgFoCEdAnZ0q6reZX3V9lChoBkdAYSRRXwLE1mgHTegDaAhHQJ2dvk7wKBx1fZQoaAZHQHGdoY3vQWxoB00KAWgIR0CdneGNrCWNdX2UKGgGR0Bxd6xzJZGKaAdL/2gIR0Cdn1ixVyWBdX2UKGgGR0BykGcvugHvaAdNZwFoCEdAnZ+mWY4Qz3V9lChoBkdAclAVymygPGgHTTEBaAhHQJ2ha+oLofV1fZQoaAZHQHH1fnwG4ZxoB0v5aAhHQJ2iSJP69Ch1fZQoaAZHQHK72ZuyeI5oB02kAWgIR0Cdo4dCmdiEdX2UKGgGR0Bw9g+gUUO/aAdNFwFoCEdAnaRfrGBFu3V9lChoBkdAcpS4nF5v+GgHTVMBaAhHQJ2k7yOJcgR1fZQoaAZHQHDjKFdszl9oB0v9aAhHQJ2lY/jbSJF1fZQoaAZHQHL2Sh37k4poB00gAWgIR0CdphC8vmHQdX2UKGgGR0By5MVTJhfCaAdL/mgIR0Cdph5gPVd5dX2UKGgGR0BxIlavA44qaAdNAgFoCEdAnaYqVMVUM3V9lChoBkdAYIZtNSIgvGgHTegDaAhHQJ2mOK0lZ5l1fZQoaAZHQHD+Sdat9x9oB01RAWgIR0CdpkiaAnUldX2UKGgGR0ByXkzMzMzNaAdNCwFoCEdAnaboMnZ00XV9lChoBkdAbY7wNLDhtWgHTQgBaAhHQJ2m8j2SMcZ1fZQoaAZHQHIKniWE9MdoB00WAWgIR0CdqLSX+l0pdX2UKGgGR0Bw1amEXcgyaAdNIwFoCEdAnajVTaTOgXV9lChoBkdAcU55vtMPBmgHTQMCaAhHQJ2o5Bsyi251fZQoaAZHQHFoFWsA/9poB00MAWgIR0Cdq1F8XvYwdX2UKGgGR0BKzfra/RE4aAdLxWgIR0Cdq86k690zdX2UKGgGR0BxWPqPfbblaAdL8WgIR0CdrTo11nuidX2UKGgGR0Bw8iGqPwNLaAdNCAFoCEdAna2bmlqJuXV9lChoBkdAczdTcqOLi2gHTSgBaAhHQJ2uGCGvfTF1fZQoaAZHQHDqyhrWRRxoB0vzaAhHQJ2u79bX6Ip1fZQoaAZHQHLfPv8ZUDNoB00FAWgIR0Cdr4Fh5PdmdX2UKGgGR0BthKbYsd1daAdNDQFoCEdAna/kxASnL3V9lChoBkdAb+gAmReTmmgHTRYBaAhHQJ2wXEQ5FPV1fZQoaAZHQHKs2DYh+v1oB00fAWgIR0CdsOf+CK77dX2UKGgGR0BwuhPva11GaAdNFwFoCEdAnbGLlNlAeXV9lChoBkdAcbwcx0uDjGgHTTsBaAhHQJ2zCZgG8mN1fZQoaAZHQHDpctXgccVoB0v6aAhHQJ2zbaXa8Hx1fZQoaAZHQG4BWnjyWiVoB00SAWgIR0CdtFiEg4ffdX2UKGgGR0BwBshMajveaAdNKQFoCEdAnbWSeVcD83V9lChoBkdAcLYzTnaFmGgHTQkBaAhHQJ22+EvkBCF1fZQoaAZHQHC68r3Cbc5oB00fAWgIR0CduI5YYBNmdX2UKGgGR0BCSKk/KQq7aAdLymgIR0CduNsCT2WZdX2UKGgGR0BuS6JqIrOJaAdNBgFoCEdAnbjcCPp6hXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}