--- library_name: peft --- !python llama-recipes/llama_finetuning.py \ --use_peft \ --num_epochs 1 \ --peft_method lora \ --run_validation false \ --quantization \ --dataset alpaca_dataset \ --model_name meta-llama/Llama-2-7b-chat-hf \ --save_model \ --save_optimizer \ --batch_size_training 8 \ --output_dir ./save ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0