--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: result1 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.979381443298969 --- # result1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1566 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 1.3671 | 0.9588 | | No log | 1.8462 | 6 | 1.3125 | 0.9897 | | No log | 2.7692 | 9 | 1.2705 | 0.9691 | | 1.372 | 4.0 | 13 | 1.2335 | 0.9794 | | 1.372 | 4.9231 | 16 | 1.2130 | 0.9897 | | 1.372 | 5.8462 | 19 | 1.1962 | 0.9794 | | 1.2696 | 6.7692 | 22 | 1.1803 | 0.9794 | | 1.2696 | 8.0 | 26 | 1.1640 | 0.9794 | | 1.2696 | 8.9231 | 29 | 1.1574 | 0.9794 | | 1.208 | 9.2308 | 30 | 1.1566 | 0.9794 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1