--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: hu split: test args: hu metrics: - name: Wer type: wer value: 15.600355766380078 --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3313 - Wer: 15.6004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0076 | 7.52 | 1000 | 0.2607 | 16.0332 | | 0.0013 | 15.04 | 2000 | 0.2896 | 15.7842 | | 0.0009 | 22.55 | 3000 | 0.3042 | 16.2378 | | 0.0003 | 30.07 | 4000 | 0.3247 | 15.5944 | | 0.0002 | 37.59 | 5000 | 0.3313 | 15.6004 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2