|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
from PIL import Image |
|
|
|
class Generator(nn.Module): |
|
def __init__(self): |
|
super(Generator, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.ConvTranspose2d(128, 64 * 8, 4, 1, 0, bias=False), |
|
nn.BatchNorm2d(64 * 8), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(64 * 8, 64 * 4, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(64 * 4), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(64 * 2), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False), |
|
nn.BatchNorm2d(64), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False), |
|
nn.Tanh() |
|
) |
|
|
|
def forward(self, input): |
|
return self.main(input) |
|
|
|
class PretrainedPipeline(): |
|
def __init__(self): |
|
self.device = torch.device("cpu") |
|
self.generator = Generator() |
|
self.generator.load_state_dict(torch.load("generator.pth", map_location=self.device)) |
|
self.generator.eval() |
|
|
|
def generate_image(self): |
|
with torch.no_grad(): |
|
noise = torch.randn(1, 128, 1, 1).to(self.device) |
|
generated_image_tensor = self.generator(noise) |
|
generated_image = generated_image_tensor.cpu().detach().squeeze(0) |
|
|
|
generated_image = (generated_image + 1) / 2.0 |
|
pil_image = transforms.ToPILImage()(generated_image) |
|
return pil_image |