|
""" |
|
finetune Phi-4-multimodal-instruct on an speech task |
|
|
|
scipy==1.15.1 |
|
peft==0.13.2 |
|
backoff==2.2.1 |
|
transformers==4.46.1 |
|
accelerate==1.3.0 |
|
""" |
|
|
|
import argparse |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import torch |
|
import sacrebleu |
|
from accelerate import Accelerator |
|
from accelerate.utils import gather_object |
|
from datasets import load_dataset |
|
from torch.utils.data import Dataset |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
BatchFeature, |
|
Trainer, |
|
TrainingArguments, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
) |
|
|
|
|
|
INSTSRUCTION = { |
|
"en_zh-CN": "Translate the audio to Mandarin.", |
|
"en_id": "Translate the audio to Indonesian.", |
|
"en_sl": "Translate the audio to Slovenian.", |
|
} |
|
TOKENIZER = { |
|
"en_zh-CN": "zh", |
|
"en_ja": "ja-mecab", |
|
} |
|
ANSWER_SUFFIX = "<|end|><|endoftext|>" |
|
_IGNORE_INDEX = -100 |
|
_TRAIN_SIZE = 50000 |
|
_EVAL_SIZE = 200 |
|
|
|
class MultipleTokenBatchStoppingCriteria(StoppingCriteria): |
|
"""Stopping criteria capable of receiving multiple stop-tokens and handling batched inputs.""" |
|
|
|
def __init__(self, stop_tokens: torch.LongTensor, batch_size: int = 1) -> None: |
|
"""Initialize the multiple token batch stopping criteria. |
|
|
|
Args: |
|
stop_tokens: Stop-tokens. |
|
batch_size: Batch size. |
|
|
|
""" |
|
|
|
self.stop_tokens = stop_tokens |
|
self.max_stop_tokens = stop_tokens.shape[-1] |
|
self.stop_tokens_idx = torch.zeros(batch_size, dtype=torch.long, device=stop_tokens.device) |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
|
|
|
|
generated_inputs = torch.eq(input_ids[:, -self.max_stop_tokens :].unsqueeze(1), self.stop_tokens) |
|
equal_generated_inputs = torch.all(generated_inputs, dim=2) |
|
|
|
|
|
|
|
sequence_idx = torch.any(equal_generated_inputs, dim=1) |
|
sequence_set_mask = self.stop_tokens_idx == 0 |
|
self.stop_tokens_idx[sequence_idx & sequence_set_mask] = input_ids.shape[-1] |
|
|
|
return torch.all(self.stop_tokens_idx) |
|
|
|
class CoVoSTDataset(Dataset): |
|
def __init__(self, processor, data_dir, split, |
|
lang="en_zh-CN", rank=0, world_size=1): |
|
|
|
self.data = load_dataset("facebook/covost2", |
|
lang, |
|
data_dir=data_dir, |
|
split=split, |
|
trust_remote_code=True |
|
) |
|
self.training = "train" in split |
|
self.processor = processor |
|
self.instruction = INSTSRUCTION[lang] |
|
|
|
if world_size > 1: |
|
self.data = self.data.shard(world_size, rank) |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
""" |
|
{'client_id': '0013037a1d45cc33460806cc3f8ecee9d536c45639ba4cbbf1564f1c051f53ff3c9f89ef2f1bf04badf55b3a2e7654c086f903681a7b6299616cff6f67598eff', |
|
'file': '{data_dir}/clips/common_voice_en_699711.mp3', |
|
'audio': {'path': '{data_dir}/clips/common_voice_en_699711.mp3', |
|
'array': array([-1.28056854e-09, -1.74622983e-09, -1.16415322e-10, ..., |
|
3.92560651e-10, 6.62794264e-10, -3.89536581e-09]), |
|
'sampling_rate': 16000}, |
|
'sentence': '"She\'ll be all right."', |
|
'translation': '她会没事的。', |
|
'id': 'common_voice_en_699711'} |
|
""" |
|
data = self.data[idx] |
|
user_message = { |
|
'role': 'user', |
|
'content': '<|audio_1|>\n' + self.instruction, |
|
} |
|
prompt = self.processor.tokenizer.apply_chat_template( |
|
[user_message], tokenize=False, add_generation_prompt=True |
|
) |
|
inputs = self.processor(text=prompt, audios=[(data["audio"]["array"], data["audio"]["sampling_rate"])], return_tensors='pt') |
|
|
|
answer = f"{data['translation']}{ANSWER_SUFFIX}" |
|
answer_ids = self.processor.tokenizer(answer, return_tensors='pt').input_ids |
|
if self.training: |
|
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1) |
|
labels = torch.full_like(input_ids, _IGNORE_INDEX) |
|
labels[:, -answer_ids.shape[1] :] = answer_ids |
|
else: |
|
input_ids = inputs.input_ids |
|
labels = answer_ids |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'labels': labels, |
|
'input_audio_embeds': inputs.input_audio_embeds, |
|
'audio_embed_sizes': inputs.audio_embed_sizes, |
|
} |
|
|
|
def pad_sequence(sequences, padding_side='right', padding_value=0): |
|
""" |
|
Pad a list of sequences to the same length. |
|
sequences: list of tensors in [seq_len, *] shape |
|
""" |
|
assert padding_side in ['right', 'left'] |
|
max_size = sequences[0].size() |
|
trailing_dims = max_size[1:] |
|
max_len = max(len(seq) for seq in sequences) |
|
batch_size = len(sequences) |
|
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value) |
|
for i, seq in enumerate(sequences): |
|
length = seq.size(0) |
|
if padding_side == 'right': |
|
output.data[i, :length] = seq |
|
else: |
|
output.data[i, -length:] = seq |
|
return output |
|
|
|
|
|
def cat_with_pad(tensors, dim, padding_value=0): |
|
""" |
|
cat along dim, while pad to max for all other dims |
|
""" |
|
ndim = tensors[0].dim() |
|
assert all( |
|
t.dim() == ndim for t in tensors[1:] |
|
), 'All tensors must have the same number of dimensions' |
|
|
|
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)] |
|
out_size[dim] = sum(t.shape[dim] for t in tensors) |
|
output = tensors[0].new_full(out_size, padding_value) |
|
|
|
index = 0 |
|
for t in tensors: |
|
|
|
slices = [slice(0, t.shape[d]) for d in range(ndim)] |
|
|
|
slices[dim] = slice(index, index + t.shape[dim]) |
|
|
|
output[slices] = t |
|
index += t.shape[dim] |
|
|
|
return output |
|
|
|
|
|
def covost_collate_fn(batch): |
|
input_ids_list = [] |
|
labels_list = [] |
|
input_audio_embeds_list = [] |
|
audio_embed_sizes_list = [] |
|
audio_attention_mask_list = [] |
|
for inputs in batch: |
|
input_ids_list.append(inputs['input_ids'][0]) |
|
labels_list.append(inputs['labels'][0]) |
|
input_audio_embeds_list.append(inputs['input_audio_embeds']) |
|
audio_embed_sizes_list.append(inputs['audio_embed_sizes']) |
|
audio_attention_mask_list.append( |
|
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool) |
|
) |
|
|
|
try: |
|
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0) |
|
labels = pad_sequence(labels_list, padding_side='left', padding_value=0) |
|
audio_attention_mask = ( |
|
pad_sequence(audio_attention_mask_list, padding_side='right', padding_value=False) |
|
if len(audio_attention_mask_list) > 1 |
|
else None |
|
) |
|
except Exception as e: |
|
print(e) |
|
print(input_ids_list) |
|
print(labels_list) |
|
raise |
|
attention_mask = (input_ids != 0).long() |
|
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0) |
|
audio_embed_sizes = torch.cat(audio_embed_sizes_list) |
|
|
|
return BatchFeature( |
|
{ |
|
'input_ids': input_ids, |
|
'labels': labels, |
|
'attention_mask': attention_mask, |
|
'input_audio_embeds': input_audio_embeds, |
|
'audio_embed_sizes': audio_embed_sizes, |
|
'audio_attention_mask': audio_attention_mask, |
|
'input_mode': 2, |
|
} |
|
) |
|
|
|
|
|
|
|
def create_model(model_name_or_path, use_flash_attention=False): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
torch_dtype=torch.bfloat16 if use_flash_attention else torch.float32, |
|
_attn_implementation='flash_attention_2' if use_flash_attention else 'sdpa', |
|
trust_remote_code=True, |
|
).to('cuda') |
|
|
|
return model |
|
|
|
|
|
@torch.no_grad() |
|
def evaluate( |
|
model, processor, eval_dataset, save_path=None, disable_tqdm=False, eval_batch_size=1 |
|
): |
|
rank = int(os.environ.get('RANK', 0)) |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
|
|
model.eval() |
|
all_generated_texts = [] |
|
all_labels = [] |
|
|
|
eval_dataloader = torch.utils.data.DataLoader( |
|
eval_dataset, |
|
batch_size=eval_batch_size, |
|
collate_fn=covost_collate_fn, |
|
shuffle=False, |
|
drop_last=False, |
|
num_workers=8, |
|
prefetch_factor=2, |
|
pin_memory=True, |
|
) |
|
stop_tokens = ["<|end|>", processor.tokenizer.eos_token] |
|
stop_tokens_ids = processor.tokenizer(stop_tokens, add_special_tokens=False, padding="longest", return_tensors="pt")["input_ids"] |
|
stop_tokens_ids = stop_tokens_ids.to(f'cuda:{local_rank}') |
|
|
|
for inputs in tqdm( |
|
eval_dataloader, disable=(rank != 0) or disable_tqdm, desc='running eval' |
|
): |
|
stopping_criteria=StoppingCriteriaList([MultipleTokenBatchStoppingCriteria(stop_tokens_ids, batch_size=inputs.input_ids.size(0))]) |
|
inputs = inputs.to(f'cuda:{local_rank}') |
|
generated_ids = model.generate( |
|
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64, |
|
stopping_criteria=stopping_criteria, |
|
) |
|
|
|
stop_tokens_idx = stopping_criteria[0].stop_tokens_idx.reshape(inputs.input_ids.size(0), -1)[:, 0] |
|
|
|
stop_tokens_idx = torch.where( |
|
stop_tokens_idx > 0, |
|
stop_tokens_idx - stop_tokens_ids.shape[-1], |
|
generated_ids.shape[-1], |
|
) |
|
generated_text = [ |
|
processor.decode(_pred_ids[inputs["input_ids"].shape[1] : _stop_tokens_idx], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
for _pred_ids, _stop_tokens_idx in zip(generated_ids, stop_tokens_idx) |
|
] |
|
all_generated_texts.extend(generated_text) |
|
labels = [processor.decode(_label_ids[_label_ids != 0]).rstrip(ANSWER_SUFFIX) for _label_ids in inputs["labels"]] |
|
all_labels.extend(labels) |
|
|
|
all_generated_texts = gather_object(all_generated_texts) |
|
all_labels = gather_object(all_labels) |
|
|
|
if rank == 0: |
|
assert len(all_generated_texts) == len(all_labels) |
|
bleu = sacrebleu.corpus_bleu(all_generated_texts, [all_labels]) |
|
print(bleu) |
|
if save_path: |
|
with open(save_path, 'w') as f: |
|
save_dict = { |
|
'all_generated_texts': all_generated_texts, |
|
'all_labels': all_labels, |
|
'score': bleu.score, |
|
} |
|
json.dump(save_dict, f) |
|
|
|
return bleu.score |
|
return None |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--model_name_or_path', |
|
type=str, |
|
default='microsoft/Phi-4-multimodal-instruct', |
|
help='Model name or path to load from', |
|
) |
|
parser.add_argument( |
|
"--common_voice_dir", |
|
type=str, |
|
default="CommonVoice/EN", |
|
help="Unzipped Common Voice Audio dataset directory, refer to https://commonvoice.mozilla.org/en/datasets, version 4.0", |
|
) |
|
parser.add_argument( |
|
"--lang", |
|
type=str, |
|
default="en_sl", |
|
help="Language pair for translation.", |
|
) |
|
parser.add_argument('--use_flash_attention', action='store_true', help='Use Flash Attention') |
|
parser.add_argument('--output_dir', type=str, default='./output/', help='Output directory') |
|
parser.add_argument('--batch_size', type=int, default=128, help='Batch size') |
|
parser.add_argument( |
|
'--batch_size_per_gpu', |
|
type=int, |
|
default=32, |
|
help='Batch size per GPU (adjust this to fit in GPU memory)', |
|
) |
|
parser.add_argument( |
|
'--num_train_epochs', type=int, default=1, help='Number of training epochs' |
|
) |
|
parser.add_argument('--learning_rate', type=float, default=4.0e-5, help='Learning rate') |
|
parser.add_argument('--wd', type=float, default=0.01, help='Weight decay') |
|
parser.add_argument('--no-tqdm', dest='tqdm', action='store_false', help='Disable tqdm') |
|
args = parser.parse_args() |
|
|
|
accelerator = Accelerator() |
|
|
|
with accelerator.local_main_process_first(): |
|
processor = AutoProcessor.from_pretrained( |
|
args.model_name_or_path, |
|
trust_remote_code=True, |
|
) |
|
model = create_model( |
|
args.model_name_or_path, |
|
use_flash_attention=args.use_flash_attention, |
|
) |
|
|
|
model.set_lora_adapter('speech') |
|
|
|
|
|
rank = int(os.environ.get('RANK', 0)) |
|
world_size = int(os.environ.get('WORLD_SIZE', 1)) |
|
|
|
eval_dataset = CoVoSTDataset(processor, |
|
data_dir=args.common_voice_dir, |
|
split=f'test[:{_EVAL_SIZE}]', |
|
lang=args.lang, |
|
rank=rank, |
|
world_size=world_size) |
|
|
|
train_dataset = CoVoSTDataset(processor, |
|
data_dir=args.common_voice_dir, |
|
split=f'train[:{_TRAIN_SIZE}]', |
|
lang=args.lang) |
|
|
|
num_gpus = accelerator.num_processes |
|
print(f'training on {num_gpus} GPUs') |
|
assert ( |
|
args.batch_size % (num_gpus * args.batch_size_per_gpu) == 0 |
|
), 'Batch size must be divisible by the number of GPUs' |
|
gradient_accumulation_steps = args.batch_size // (num_gpus * args.batch_size_per_gpu) |
|
|
|
if args.use_flash_attention: |
|
fp16 = False |
|
bf16 = True |
|
else: |
|
fp16 = True |
|
bf16 = False |
|
|
|
|
|
training_args = TrainingArguments( |
|
num_train_epochs=args.num_train_epochs, |
|
per_device_train_batch_size=args.batch_size_per_gpu, |
|
gradient_checkpointing=True, |
|
gradient_checkpointing_kwargs={'use_reentrant': False}, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
optim='adamw_torch', |
|
adam_beta1=0.9, |
|
adam_beta2=0.95, |
|
adam_epsilon=1e-7, |
|
learning_rate=args.learning_rate, |
|
weight_decay=args.wd, |
|
max_grad_norm=1.0, |
|
lr_scheduler_type='linear', |
|
warmup_steps=50, |
|
logging_steps=10, |
|
output_dir=args.output_dir, |
|
save_strategy='no', |
|
save_total_limit=10, |
|
save_only_model=True, |
|
bf16=bf16, |
|
fp16=fp16, |
|
remove_unused_columns=False, |
|
report_to='none', |
|
deepspeed=None, |
|
disable_tqdm=not args.tqdm, |
|
dataloader_num_workers=4, |
|
ddp_find_unused_parameters=True, |
|
) |
|
|
|
|
|
out_path = Path(training_args.output_dir) |
|
out_path.mkdir(parents=True, exist_ok=True) |
|
|
|
score = evaluate( |
|
model, |
|
processor, |
|
eval_dataset, |
|
save_path=out_path / 'eval_before.json', |
|
disable_tqdm=not args.tqdm, |
|
eval_batch_size=args.batch_size_per_gpu, |
|
) |
|
if accelerator.is_main_process: |
|
print(f'BLEU Score before finetuning: {score}') |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
data_collator=covost_collate_fn, |
|
train_dataset=train_dataset, |
|
) |
|
|
|
trainer.train() |
|
trainer.save_model() |
|
if accelerator.is_main_process: |
|
processor.save_pretrained(training_args.output_dir) |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
|
|
del model |
|
del trainer |
|
__import__('gc').collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
training_args.output_dir, |
|
torch_dtype=torch.bfloat16 if args.use_flash_attention else torch.float32, |
|
trust_remote_code=True, |
|
_attn_implementation='flash_attention_2' if args.use_flash_attention else 'sdpa', |
|
).to('cuda') |
|
|
|
score = evaluate( |
|
model, |
|
processor, |
|
eval_dataset, |
|
save_path=out_path / 'eval_after.json', |
|
disable_tqdm=not args.tqdm, |
|
eval_batch_size=args.batch_size_per_gpu, |
|
) |
|
if accelerator.is_main_process: |
|
print(f'BLEU Score after finetuning: {score}') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|