# coding=utf-8 # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Phi3-V.""" from typing import List, Optional, Union import numpy as np from transformers.image_processing_utils import BaseImageProcessor, BatchFeature from transformers.image_transforms import ( convert_to_rgb, ) from transformers.image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ImageInput, make_list_of_images, valid_images, ) from transformers.utils import TensorType, is_vision_available, logging from transformers import AutoImageProcessor logger = logging.get_logger(__name__) if is_vision_available(): from PIL import Image import torch import torchvision def padding_336(b): width, height = b.size tar = int(np.ceil(height / 336) * 336) top_padding = int((tar - height)/2) bottom_padding = tar - height - top_padding left_padding = 0 right_padding = 0 b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) return b def calc_padded_size(width, height, padding_unit=336): target_height = int(np.ceil(height / padding_unit) * padding_unit) top_padding = int((target_height - height) / 2) bottom_padding = target_height - height - top_padding left_padding = 0 right_padding = 0 padded_width = width + left_padding + right_padding padded_height = height + top_padding + bottom_padding return padded_width, padded_height def HD_transform(img, hd_num=16): width, height = img.size trans = False if width < height: img = img.transpose(Image.TRANSPOSE) trans = True width, height = img.size ratio = (width/ height) scale = 1 while scale*np.ceil(scale/ratio) <= hd_num: scale += 1 scale -= 1 new_w = int(scale * 336) new_h = int(new_w / ratio) img = torchvision.transforms.functional.resize(img, [new_h, new_w],) img = padding_336(img) width, height = img.size if trans: img = img.transpose(Image.TRANSPOSE) return img def calc_hd_transform_size(width, height, hd_num=16): transposed = False if width < height: width, height = height, width transposed = True ratio = width / height scale = 1 while scale * np.ceil(scale / ratio) <= hd_num: scale += 1 scale -= 1 new_width = int(scale * 336) new_height = int(new_width / ratio) padded_width, padded_height = calc_padded_size(new_width, new_height) if transposed: padded_width, padded_height = padded_height, padded_width return padded_width, padded_height def pad_to_max_num_crops_tensor(images, max_crops=5): """ images: B x 3 x H x W, B<=max_crops """ B, _, H, W = images.shape if B < max_crops: pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) images = torch.cat([images, pad], dim=0) return images class Phi3VImageProcessor(BaseImageProcessor): r""" Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512) Args: image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, num_crops: int = 1, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) self.num_crops = num_crops self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def calc_num_image_tokens( self, images: ImageInput ): """ Calculate the number of image tokens for each image. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. """ images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = [image.convert('RGB') for image in images] # (H, W, C) elems = [HD_transform(im, hd_num = self.num_crops) for im in images] shapes = [[im.size[1], im.size[0]] for im in elems] num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] return num_img_tokens def calc_num_image_tokens_from_image_size(self, width, height): """ Calculate the number of image tokens for a given image size. Args: width (`int`): Width of the image. height (`int`): Height of the image. """ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops) num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12) return num_img_tokens def preprocess( self, images: ImageInput, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. """ image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] image_sizes = [] img_processor = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(image_mean, image_std) ]) # PIL images # HD_transform pad images to size of multiiply of 336, 336 # convert to RGB first images = [image.convert('RGB') for image in images] elems = [HD_transform(im, hd_num = self.num_crops) for im in images] # tensor transform and normalize hd_images = [img_processor(im) for im in elems] # create global image global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images] # [(3, h, w)], where h, w is multiple of 336 shapes = [[im.size(1), im.size(2)] for im in hd_images] num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336) # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336) hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)] # concat global image and local image hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] # pad to max_num_crops image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape] image_transformed = torch.stack(image_transformed, dim=0) image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes] padded_images = image_transformed image_sizes = shapes data = {"pixel_values": padded_images, "image_sizes": image_sizes, "num_img_tokens": num_img_tokens } return BatchFeature(data=data, tensor_type=return_tensors) AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)