--- license: apache-2.0 datasets: - michelecafagna26/hl language: - en metrics: - sacrebleu - rouge - meteor - spice - cider library_name: pytorch tags: - pytorch - image-to-text --- # Model Card: VinVL for Captioning ๐Ÿ–ผ๏ธ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) for **scene description generation** downstream task. # Model fine-tuning ๐Ÿ‹๏ธโ€ The model has been finetuned for 10 epochs on the scenes captions of the [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) (available on ๐Ÿค— HUB: [michelecafagna26/hl](https://huggingface.co/datasets/michelecafagna26/hl)) # Test set metrics ๐Ÿ“ˆ Obtained with beam size 5 and max length 20 | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE | |--------|--------|--------|--------|--------|---------|-------|-------| | 0.68 | 0.55 | 0.45 | 0.36 | 0.36 | 0.63 | 1.42 | 0.40 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction โ›๏ธ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4) - the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: ๐Ÿš€ ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'in a library', 'conf': 0.7070220112800598]} ``` # Citations ๐Ÿงพ VinVL model finetuned on scenes descriptions: ```BibTeX @inproceedings{cafagna-etal-2022-understanding, title = "Understanding Cross-modal Interactions in {V}{\&}{L} Models that Generate Scene Descriptions", author = "Cafagna, Michele and Deemter, Kees van and Gatt, Albert", booktitle = "Proceedings of the Workshop on Unimodal and Multimodal Induction of Linguistic Structures (UM-IoS)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.umios-1.6", pages = "56--72", abstract = "Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state of the art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.", } ``` Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ``` And the HL Dataset paper ```BibTeX @inproceedings{cafagna2023hl, title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and {R}ationales}, author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert}, booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)}, address = {Prague, Czech Republic}, year={2023} } ```