--- license: apache-2.0 language: en datasets: - sst2 --- # T5-base fine-tuned for Sentiment Analysis ๐Ÿ‘๐Ÿ‘Ž [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) base fine-tuned on [SST-2](https://huggingface.co/datasets/st2) dataset for **Sentiment Analysis** downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Model fine-tuning ๐Ÿ‹๏ธโ€ The model has been finetuned for 10 epochs on standard hyperparameters ## Val set metrics ๐Ÿงพ |precision | recall | f1-score |support| |----------|----------|---------|----------|-------| |negative | 0.95 | 0.95| 0.95| 428 | |positive | 0.94 | 0.96| 0.95| 444 | |----------|----------|---------|----------|-------| |accuracy| | | 0.95| 872 | |macro avg| 0.95| 0.95| 0.95| 872 | |weighted avg| 0.95| 0.95| 0.95 | 872 | ## Model in Action ๐Ÿš€ ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("t5-finetune-sst2") model = T5ForConditionalGeneration.from_pretrained("t5-finetune-sst2") def get_sentiment(text): inputs = tokenizer("sentiment: " + text, max_length=128, truncation=True, return_tensors="pt").input_ids preds = model.generate(inputs) decoded_preds = tokenizer.batch_decode(sequences=preds, skip_special_tokens=True) return decoded_preds get_sentiment("This movie is awesome") # labels are 'p' for 'positive' and 'n' for 'negative' # Output: ['p'] ``` > This model card is based on "mrm8488/t5-base-finetuned-imdb-sentiment" by Manuel Romero/@mrm8488