--- license: apache-2.0 tags: - image-captioning languages: - en datasets: - michelecafagna26/hl language: - en metrics: - sacrebleu - rouge library_name: transformers --- ## ClipCap fine-tuned for Action Image Captioning [ClipCap](https://arxiv.org/abs/2111.09734) base trained on the [HL Dataset](https://huggingface.co/datasets/michelecafagna26/hl) for **high-level action descriptions generation** ## Model fine-tuning ๐Ÿ‹๏ธโ€ We fine-tune LM + Mapping Network starting from the model pretrained on COCO - Trained for 10 epochs - lr: 5eโˆ’5 - Adam optimizer - half-precision (fp16) ## Test set metrics ๐Ÿงพ | Cider | SacreBLEU | Rouge-L| |---------|------------|--------| | 176.54 | 27.37 | 39.15 | ## Demo [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Rw9_oNNfP2QsIpekmJhRHAXv_6MX-0ur?usp=sharing) ## Installation ```bash pip install git+https://github.com/michelecafagna26/CLIPCap.git ``` ## Download the model ```bash git lfs install # if not installed git clone https://huggingface.co/michelecafagna26/clipcap-base-captioning-ft-hl-actions ``` ## Model in Action ๐Ÿš€ ```python from clipcap import ClipCaptionModel import torch from transformers import ( GPT2Tokenizer, GPT2LMHeadModel, ) import torch import clip import requests from PIL import Image model_path = "clipcap-base-captioning-ft-hl-actions/pytorch_model.pt" # change accordingly # load clip device = "cuda" if torch.cuda.is_available() else "cpu" clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") prefix_length = 10 # load ClipCap model = ClipCaptionModel(prefix_length, tokenizer=tokenizer) model.from_pretrained(model_path) model = model.eval() model = model.to(device) # load the image img_url = 'https://datasets-server.huggingface.co/assets/michelecafagna26/hl/--/default/train/0/image/image.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # extract the prefix image = preprocess(raw_image).unsqueeze(0).to(device) with torch.no_grad(): prefix = clip_model.encode_image(image).to( device, dtype=torch.float32 ) prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) # generate the caption model.generate_beam(embed=prefix_embed)[0] # >> "she is posing for a photo." ``` ## BibTex and citation info ```BibTeX ```