--- license: gpl-2.0 tags: - object-detection datasets: - coco --- # YOLOv5 Ultralytics YOLOv5 model in Pytorch. Proof of concept for (TypoSquatting, Niche Squatting) security flaw on Hugging Face. ## Model Description ## How to use ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('mhyatt000/yolov5') model = YolosForObjectDetection.from_pretrained('mhyatt000/yolov5') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` ## Training Data ### Training ## Evaluation Model was evaluated on [COCO2017](https://cocodataset.org/#home) dataset. | Model | size (pixels) | mAPval | Speed | params | FLOPS | |---------------|-------------------|-----------|-----------|-----------|-----------| | YOLOv5s6 | 1280 | 43.3 | 4.3 | 12.7 | 17.4 | | YOLOv5m6 | 1280 | 50.5 | 8.4 | 35.9 | 52.4 | | YOLOv5l6 | 1280 | 53.4 | 12.3 | 77.2 | 117.7 | | YOLOv5x6 | 1280 | 54.4 | 22.4 | 141.8 | 222.9 | ### Bibtex and citation info ```bibtex @software{glenn_jocher_2022_6222936, author = {Glenn Jocher and Ayush Chaurasia and Alex Stoken and Jirka Borovec and NanoCode012 and Yonghye Kwon and TaoXie and Jiacong Fang and imyhxy and Kalen Michael and Lorna and Abhiram V and Diego Montes and Jebastin Nadar and Laughing and tkianai and yxNONG and Piotr Skalski and Zhiqiang Wang and Adam Hogan and Cristi Fati and Lorenzo Mammana and AlexWang1900 and Deep Patel and Ding Yiwei and Felix You and Jan Hajek and Laurentiu Diaconu and Mai Thanh Minh}, title = {{ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference}}, month = feb, year = 2022, publisher = {Zenodo}, version = {v6.1}, doi = {10.5281/zenodo.6222936}, url = {https://doi.org/10.5281/zenodo.6222936} } ```