--- base_model: meta-llama/Llama-3.2-3B library_name: peft license: llama3.2 tags: - generated_from_trainer model-index: - name: model-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Llama-3.2-3B load_in_8bit: false load_in_4bit: true strict: false adapter: qlora # Data config dataset_prepared_path: data chat_template: llama3 datasets: - path: data/train.jsonl ds_type: json data_files: - data/train.jsonl type: sharegpt test_datasets: - path: data/eval.jsonl ds_type: json # You need to specify a split. For "json" datasets the default split is called "train". split: train type: sharegpt data_files: - data/eval.jsonl sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# model-out This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9615 | 0.0696 | 1 | 0.9211 | | 0.8231 | 0.2783 | 4 | 0.9140 | | 0.779 | 0.5565 | 8 | 0.8034 | | 0.545 | 0.8348 | 12 | 0.6488 | | 0.3712 | 1.1043 | 16 | 0.5825 | | 0.336 | 1.3826 | 20 | 0.5492 | | 0.3231 | 1.6609 | 24 | 0.5379 | | 0.2729 | 1.9391 | 28 | 0.5353 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1