--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - lewtun/autotrain-data-mgb-product-reviews-xlm-r co2_eq_emissions: emissions: 19.116414139555882 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1904264758 - CO2 Emissions (in grams): 19.1164 ## Validation Metrics - Loss: 1.021 - Accuracy: 0.563 - Macro F1: 0.555 - Micro F1: 0.563 - Weighted F1: 0.556 - Macro Precision: 0.555 - Micro Precision: 0.563 - Weighted Precision: 0.556 - Macro Recall: 0.562 - Micro Recall: 0.563 - Weighted Recall: 0.563 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-mgb-product-reviews-xlm-r-1904264758 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-mgb-product-reviews-xlm-r-1904264758", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-mgb-product-reviews-xlm-r-1904264758", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```