#include #include #include "util.cuh" #include "operator.cuh" #include "rspmm.h" namespace at { // Memory & time efficient implementation of generalized spmm // Much of the code is inspired by GE-SpMM // https://github.com/hgyhungry/ge-spmm namespace { const int kCoarseningFactor = 2; const int kThreadPerBlock = 256; } // namespace anonymous template __global__ void rspmm_forward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind, const scalar_t *weight, const scalar_t *relation, const scalar_t *input, scalar_t *output, int64_t num_row, int64_t nnz, int64_t dim) { // for best optimization, the following code is compiled with constant warpSize assert(blockDim.x == warpSize); extern __shared__ int64_t buffer[]; int64_t *col_ind_buf = buffer; int64_t *layer_ind_buf = buffer + blockDim.y * warpSize; scalar_t *weight_buf = reinterpret_cast(layer_ind_buf + blockDim.y * warpSize); col_ind_buf += threadIdx.y * warpSize; layer_ind_buf += threadIdx.y * warpSize; weight_buf += threadIdx.y * warpSize; int64_t row = blockIdx.x * blockDim.y + threadIdx.y; if (row >= num_row) return; int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x; int64_t ptr_start = row_ptr[row]; int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz; scalar_t out[kCoarseningFactor]; #pragma unroll for (int64_t i = 0; i < kCoarseningFactor; i++) out[i] = NaryOp::zero; for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) { int64_t ptr = block_ptr + threadIdx.x; if (ptr < ptr_end) { col_ind_buf[threadIdx.x] = col_ind[ptr]; layer_ind_buf[threadIdx.x] = layer_ind[ptr]; weight_buf[threadIdx.x] = weight[ptr]; } __syncwarp(); int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr; for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) { int64_t col = col_ind_buf[offset_ptr]; int64_t layer = layer_ind_buf[offset_ptr]; scalar_t w = weight_buf[offset_ptr]; #pragma unroll for (int64_t i = 0; i < kCoarseningFactor; i++) { int64_t d = d_start + i * warpSize; if (d >= dim) break; scalar_t x = BinaryOp::forward(relation[layer * dim + d], input[col * dim + d]); scalar_t y = w * x; out[i] = NaryOp::forward(out[i], y); } } __syncwarp(); } #pragma unroll for (int64_t i = 0; i < kCoarseningFactor; i++) { int64_t d = d_start + i * warpSize; if (d >= dim) break; output[row * dim + d] = out[i]; } } template __global__ void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind, const scalar_t *weight, const scalar_t *relation, const scalar_t *input, const scalar_t *output, const scalar_t *output_grad, scalar_t *weight_grad, scalar_t *relation_grad, scalar_t *input_grad, int64_t num_row, int64_t nnz, int64_t dim) { // for best optimization, the following code is compiled with constant warpSize assert(blockDim.x == warpSize); extern __shared__ int64_t buffer[]; int64_t *col_ind_buf = buffer; int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize; scalar_t *weight_buf = reinterpret_cast(layer_ind_buf + blockDim.y * warpSize); col_ind_buf += threadIdx.y * warpSize; layer_ind_buf += threadIdx.y * warpSize; weight_buf += threadIdx.y * warpSize; int64_t row = blockIdx.x * blockDim.y + threadIdx.y; if (row >= num_row) return; int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x; int64_t ptr_start = row_ptr[row]; int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz; for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) { int64_t ptr = block_ptr + threadIdx.x; if (ptr < ptr_end) { col_ind_buf[threadIdx.x] = col_ind[ptr]; layer_ind_buf[threadIdx.x] = layer_ind[ptr]; weight_buf[threadIdx.x] = weight[ptr]; } __syncwarp(); int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr; for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) { int64_t col = col_ind_buf[offset_ptr]; int64_t layer = layer_ind_buf[offset_ptr]; scalar_t w = weight_buf[offset_ptr]; scalar_t w_grad = 0; #pragma unroll for (int64_t i = 0; i < kCoarseningFactor; i++) { int64_t d = d_start + i * warpSize; if (d >= dim) break; scalar_t rel = relation[layer * dim + d]; scalar_t in = input[col * dim + d]; scalar_t out = output[row * dim + d]; scalar_t out_grad = output_grad[row * dim + d]; scalar_t x = BinaryOp::forward(rel, in); scalar_t y = w * x; scalar_t dx_drel = BinaryOp::backward_lhs(rel, in); scalar_t dx_din = BinaryOp::backward_rhs(rel, in); scalar_t dout_dy = NaryOp::backward(out, y); scalar_t dy_dw = x; scalar_t dy_dx = w; w_grad += out_grad * dout_dy * dy_dw; atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel); atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din); } w_grad = warp_reduce(w_grad); if (threadIdx.x == 0) atomicAdd(&weight_grad[block_ptr + offset_ptr], w_grad); } __syncwarp(); } } // only relation & input require gradients template __global__ void rspmm_backward_out_cuda(const int64_t *row_ptr, const int64_t *col_ind, const int64_t *layer_ind, const scalar_t *weight, const scalar_t *relation, const scalar_t *input, const scalar_t *output, const scalar_t *output_grad, scalar_t *relation_grad, scalar_t *input_grad, int64_t num_row, int64_t nnz, int64_t dim) { // for best optimization, the following code is compiled with constant warpSize assert(blockDim.x == warpSize); extern __shared__ int64_t buffer[]; int64_t *col_ind_buf = buffer; int64_t *layer_ind_buf = col_ind_buf + blockDim.y * warpSize; scalar_t *weight_buf = reinterpret_cast(layer_ind_buf + blockDim.y * warpSize); col_ind_buf += threadIdx.y * warpSize; layer_ind_buf += threadIdx.y * warpSize; weight_buf += threadIdx.y * warpSize; int64_t row = blockIdx.x * blockDim.y + threadIdx.y; if (row >= num_row) return; int64_t d_start = blockIdx.y * warpSize * kCoarseningFactor + threadIdx.x; int64_t ptr_start = row_ptr[row]; int64_t ptr_end = row + 1 < num_row ? row_ptr[row + 1] : nnz; for (int64_t block_ptr = ptr_start; block_ptr < ptr_end; block_ptr += warpSize) { int64_t ptr = block_ptr + threadIdx.x; if (ptr < ptr_end) { col_ind_buf[threadIdx.x] = col_ind[ptr]; layer_ind_buf[threadIdx.x] = layer_ind[ptr]; weight_buf[threadIdx.x] = weight[ptr]; } __syncwarp(); int64_t max_offset = warpSize < ptr_end - block_ptr ? warpSize : ptr_end - block_ptr; for (int64_t offset_ptr = 0; offset_ptr < max_offset; offset_ptr++) { int64_t col = col_ind_buf[offset_ptr]; int64_t layer = layer_ind_buf[offset_ptr]; scalar_t w = weight_buf[offset_ptr]; #pragma unroll for (int64_t i = 0; i < kCoarseningFactor; i++) { int64_t d = d_start + i * warpSize; if (d >= dim) break; scalar_t rel = relation[layer * dim + d]; scalar_t in = input[col * dim + d]; scalar_t out = output[row * dim + d]; scalar_t out_grad = output_grad[row * dim + d]; scalar_t x = BinaryOp::forward(rel, in); scalar_t y = w * x; scalar_t dx_drel = BinaryOp::backward_lhs(rel, in); scalar_t dx_din = BinaryOp::backward_rhs(rel, in); scalar_t dout_dy = NaryOp::backward(out, y); scalar_t dy_dx = w; atomicAdd(&relation_grad[layer * dim + d], out_grad * dout_dy * dy_dx * dx_drel); atomicAdd(&input_grad[col * dim + d], out_grad * dout_dy * dy_dx * dx_din); } } __syncwarp(); } } template class NaryOp, template class BinaryOp> Tensor rspmm_forward_cuda(const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_, const Tensor &relation_, const Tensor &input_) { constexpr const char *fn_name = "rspmm_forward_cuda"; TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2), edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4), input_arg(input_, "input", 5); rspmm_forward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg); checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg}); const Tensor edge_index = edge_index_.contiguous(); const Tensor edge_type = edge_type_.contiguous(); const Tensor edge_weight = edge_weight_.contiguous(); const Tensor relation = relation_.contiguous(); const Tensor input = input_.contiguous(); int64_t nnz = edge_index.size(0); int64_t num_row = input.size(0); int64_t dim = input.size(1); Tensor output = at::empty({num_row, dim}, input.options()); Tensor row_ind = edge_index.select(0, 0); Tensor row_ptr = ind2ptr(row_ind, num_row); Tensor col_ind = edge_index.select(0, 1); Tensor layer_ind = edge_type; cudaSetDevice(input.get_device()); auto stream = at::cuda::getCurrentCUDAStream(); const int dim_per_block = 32; // warpSize const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor); const int row_per_block = kThreadPerBlock / dim_per_block; const int num_row_block = (num_row + row_per_block - 1) / row_per_block; AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_forward_cuda", [&] { const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t)); rspmm_forward_out_cuda, BinaryOp> <<>>( row_ptr.data_ptr(), col_ind.data_ptr(), layer_ind.data_ptr(), edge_weight.data_ptr(), relation.data_ptr(), input.data_ptr(), output.data_ptr(), num_row, nnz, dim ); }); return output; } template class NaryOp, template class BinaryOp> std::tuple rspmm_backward_cuda( const Tensor &edge_index_, const Tensor &edge_type_, const Tensor &edge_weight_, const Tensor &relation_, const Tensor &input_, const Tensor &output_, const Tensor &output_grad_) { constexpr const char *fn_name = "rspmm_backward_cuda"; TensorArg edge_index_arg(edge_index_, "edge_index", 1), edge_type_arg(edge_type_, "edge_type", 2), edge_weight_arg(edge_weight_, "edge_weight", 3), relation_arg(relation_, "relation", 4), input_arg(input_, "input", 5), output_arg(output_, "output", 6), output_grad_arg(output_grad_, "output_grad", 7); rspmm_backward_check(fn_name, edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, output_arg, output_grad_arg); checkAllSameGPU(fn_name, {edge_index_arg, edge_type_arg, edge_weight_arg, relation_arg, input_arg, output_arg, output_grad_arg}); const Tensor edge_index = edge_index_.contiguous(); const Tensor edge_type = edge_type_.contiguous(); const Tensor edge_weight = edge_weight_.contiguous(); const Tensor relation = relation_.contiguous(); const Tensor input = input_.contiguous(); const Tensor output = output_.contiguous(); const Tensor output_grad = output_grad_.contiguous(); int64_t nnz = edge_index.size(0); int64_t num_row = input.size(0); int64_t dim = input.size(1); Tensor weight_grad = at::zeros_like(edge_weight); Tensor relation_grad = at::zeros_like(relation); Tensor input_grad = at::zeros_like(input); Tensor row_ind = edge_index.select(0, 0); Tensor row_ptr = ind2ptr(row_ind, num_row); Tensor col_ind = edge_index.select(0, 1); Tensor layer_ind = edge_type; cudaSetDevice(input.get_device()); auto stream = at::cuda::getCurrentCUDAStream(); const int dim_per_block = 32; // warpSize const int num_dim_block = (dim + dim_per_block * kCoarseningFactor - 1) / (dim_per_block * kCoarseningFactor); const int row_per_block = kThreadPerBlock / dim_per_block; const int num_row_block = (num_row + row_per_block - 1) / row_per_block; if (edge_weight.requires_grad()) AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] { const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t)); rspmm_backward_out_cuda, BinaryOp> <<>>( row_ptr.data_ptr(), col_ind.data_ptr(), layer_ind.data_ptr(), edge_weight.data_ptr(), relation.data_ptr(), input.data_ptr(), output.data_ptr(), output_grad.data_ptr(), weight_grad.data_ptr(), relation_grad.data_ptr(), input_grad.data_ptr(), num_row, nnz, dim ); }); else AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rspmm_backward_cuda", [&] { const int memory_size = kThreadPerBlock * (sizeof(int64_t) * 2 + sizeof(scalar_t)); rspmm_backward_out_cuda, BinaryOp> <<>>( row_ptr.data_ptr(), col_ind.data_ptr(), layer_ind.data_ptr(), edge_weight.data_ptr(), relation.data_ptr(), input.data_ptr(), output.data_ptr(), output_grad.data_ptr(), relation_grad.data_ptr(), input_grad.data_ptr(), num_row, nnz, dim ); }); return std::make_tuple(weight_grad, relation_grad, input_grad); } #define DECLARE_FORWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \ Tensor rspmm_##ADD##_##MUL##_forward_cuda( \ const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \ const Tensor &relation, const Tensor &input) { \ return rspmm_forward_cuda(edge_index, edge_type, edge_weight, relation, input); \ } #define DECLARE_BACKWARD_IMPL(ADD, MUL, NARYOP, BINARYOP) \ std::tuple rspmm_##ADD##_##MUL##_backward_cuda( \ const Tensor &edge_index, const Tensor &edge_type, const Tensor &edge_weight, \ const Tensor &relation, const Tensor &input, const Tensor &output, const Tensor &output_grad) { \ return rspmm_backward_cuda(edge_index, edge_type, edge_weight, relation, input, \ output, output_grad); \ } DECLARE_FORWARD_IMPL(add, mul, NaryAdd, BinaryMul) DECLARE_BACKWARD_IMPL(add, mul, NaryAdd, BinaryMul) DECLARE_FORWARD_IMPL(min, mul, NaryMin, BinaryMul) DECLARE_BACKWARD_IMPL(min, mul, NaryMin, BinaryMul) DECLARE_FORWARD_IMPL(max, mul, NaryMax, BinaryMul) DECLARE_BACKWARD_IMPL(max, mul, NaryMax, BinaryMul) DECLARE_FORWARD_IMPL(add, add, NaryAdd, BinaryAdd) DECLARE_BACKWARD_IMPL(add, add, NaryAdd, BinaryAdd) DECLARE_FORWARD_IMPL(min, add, NaryMin, BinaryAdd) DECLARE_BACKWARD_IMPL(min, add, NaryMin, BinaryAdd) DECLARE_FORWARD_IMPL(max, add, NaryMax, BinaryAdd) DECLARE_BACKWARD_IMPL(max, add, NaryMax, BinaryAdd) } // namespace at