import logging logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) logging.basicConfig( format='[%(asctime)s] %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S' ) from transformers import AutoModelForCausalLM, AutoTokenizer def main(): model_name = 'tiiuae/falcon-7b-instruct' logging.info(f'Getting pretrained model {model_name}') model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') logging.info(f'Getting pretrained tokenizer {model_name}') tokenizer = AutoTokenizer.from_pretrained(model_name).to('cuda') logging.info('Tokenizing input') inputs = tokenizer.encode('Where was Emmanuel Macron born?', return_tensors = 'pt').to('cuda') logging.info('Generating output') outputs = model.generate(inputs, max_length = 300, num_return_sequences = 1) logging.info('Decoding result') result = tokenizer.decode(outputs[0], skip_special_tokens = True) print(result) if __name__ == '__main__': main()