--- base_model: dmis-lab/biobert-base-cased-v1.2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: devicebert-base-cased-v1.0 results: [] --- # devicebert-base-cased-v1.0 This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8950 - Recall: 0.9045 - F1: 0.8997 - Accuracy: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 81 | nan | 0.8950 | 0.9045 | 0.8997 | 0.9577 | | No log | 2.0 | 162 | nan | 0.8815 | 0.8217 | 0.8505 | 0.9408 | | No log | 3.0 | 243 | nan | 0.8950 | 0.9045 | 0.8997 | 0.9596 | | No log | 4.0 | 324 | nan | 0.8730 | 0.8025 | 0.8363 | 0.9390 | | No log | 5.0 | 405 | nan | 0.9048 | 0.8875 | 0.8960 | 0.9587 | | No log | 6.0 | 486 | nan | 0.9030 | 0.9087 | 0.9058 | 0.9568 | | 0.136 | 7.0 | 567 | nan | 0.8961 | 0.8790 | 0.8875 | 0.9531 | | 0.136 | 8.0 | 648 | nan | 0.8894 | 0.9045 | 0.8968 | 0.9549 | | 0.136 | 9.0 | 729 | nan | 0.8921 | 0.8599 | 0.8757 | 0.9512 | | 0.136 | 10.0 | 810 | nan | 0.9079 | 0.9002 | 0.9041 | 0.9606 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1