""" download checkpoints to ./weights beforehand python scripts/download_pretrained_models.py facelib python scripts/download_pretrained_models.py CodeFormer wget 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth' """ import tempfile import cv2 import torch from torchvision.transforms.functional import normalize from cog import BasePredictor, Input, Path from basicsr.utils import imwrite, img2tensor, tensor2img from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.realesrgan_utils import RealESRGANer from basicsr.utils.registry import ARCH_REGISTRY from facelib.utils.face_restoration_helper import FaceRestoreHelper class Predictor(BasePredictor): def setup(self): """Load the model into memory to make running multiple predictions efficient""" self.device = "cuda:0" self.bg_upsampler = set_realesrgan() self.net = ARCH_REGISTRY.get("CodeFormer")( dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=["32", "64", "128", "256"], ).to(self.device) ckpt_path = "weights/CodeFormer/codeformer.pth" checkpoint = torch.load(ckpt_path)[ "params_ema" ] # update file permission if cannot load self.net.load_state_dict(checkpoint) self.net.eval() def predict( self, image: Path = Input(description="Input image"), codeformer_fidelity: float = Input( default=0.5, ge=0, le=1, description="Balance the quality (lower number) and fidelity (higher number).", ), background_enhance: bool = Input( description="Enhance background image with Real-ESRGAN", default=True ), face_upsample: bool = Input( description="Upsample restored faces for high-resolution AI-created images", default=True, ), upscale: int = Input( description="The final upsampling scale of the image", default=2, ), ) -> Path: """Run a single prediction on the model""" # take the default setting for the demo has_aligned = False only_center_face = False draw_box = False detection_model = "retinaface_resnet50" self.face_helper = FaceRestoreHelper( upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model, save_ext="png", use_parse=True, device=self.device, ) bg_upsampler = self.bg_upsampler if background_enhance else None face_upsampler = self.bg_upsampler if face_upsample else None img = cv2.imread(str(image), cv2.IMREAD_COLOR) if has_aligned: # the input faces are already cropped and aligned img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) self.face_helper.cropped_faces = [img] else: self.face_helper.read_image(img) # get face landmarks for each face num_det_faces = self.face_helper.get_face_landmarks_5( only_center_face=only_center_face, resize=640, eye_dist_threshold=5 ) print(f"\tdetect {num_det_faces} faces") # align and warp each face self.face_helper.align_warp_face() # face restoration for each cropped face for idx, cropped_face in enumerate(self.face_helper.cropped_faces): # prepare data cropped_face_t = img2tensor( cropped_face / 255.0, bgr2rgb=True, float32=True ) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) try: with torch.no_grad(): output = self.net( cropped_face_t, w=codeformer_fidelity, adain=True )[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: print(f"\tFailed inference for CodeFormer: {error}") restored_face = tensor2img( cropped_face_t, rgb2bgr=True, min_max=(-1, 1) ) restored_face = restored_face.astype("uint8") self.face_helper.add_restored_face(restored_face) # paste_back if not has_aligned: # upsample the background if bg_upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] else: bg_img = None self.face_helper.get_inverse_affine(None) # paste each restored face to the input image if face_upsample and face_upsampler is not None: restored_img = self.face_helper.paste_faces_to_input_image( upsample_img=bg_img, draw_box=draw_box, face_upsampler=face_upsampler, ) else: restored_img = self.face_helper.paste_faces_to_input_image( upsample_img=bg_img, draw_box=draw_box ) # save restored img out_path = Path(tempfile.mkdtemp()) / "output.png" if not has_aligned and restored_img is not None: imwrite(restored_img, str(out_path)) return out_path def imread(img_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def set_realesrgan(): if not torch.cuda.is_available(): # CPU import warnings warnings.warn( "The unoptimized RealESRGAN is slow on CPU. We do not use it. " "If you really want to use it, please modify the corresponding codes.", category=RuntimeWarning, ) bg_upsampler = None else: model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) bg_upsampler = RealESRGANer( scale=2, model_path="./weights/RealESRGAN_x2plus.pth", model=model, tile=400, tile_pad=40, pre_pad=0, half=True, ) return bg_upsampler