from typing import Dict, List, Any from PIL import Image from io import BytesIO from transformers import pipeline import base64 class EndpointHandler(): def __init__(self, path=""): self.pipeline=pipeline("controlnet_qrcode-control_v11p_sd21",model=path) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: images (:obj:`string`) candiates (:obj:`list`) Return: A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} """ inputs = data.pop("inputs", data) prompts = data.pop("prompt", data) image = Image.open(BytesIO(base64.b64decode(inputs['image']))) # run prediction one image wit provided candiates prediction = self.pipeline(images=[image], prompt=[prompts]) return prediction[0]