Edit model card

LoRA gpt-j-6b

how-to

from peft import PeftModel
from transformers import GenerationConfig, AutoTokenizer, AutoConfig, GPTJForCausalLM

base_model='EleutherAI/gpt-j-6b'
temperature=0.7
top_p=0.75
top_k=40
num_beams=4
max_new_tokens=256
device = 'cuda'

template = {
    "description": "Template used by Alpaca-LoRA.",
    "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
    "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
    "response_split": "### Response:"    
}

model = GPTJForCausalLM.from_pretrained(
    base_model,
    torch_dtype=torch.float16,
    device_map="auto",
)

model = PeftModel.from_pretrained(
    model,
    'mesolitica/gptj6b-finetune',
    torch_dtype=torch.float16,
)

model.config.pad_token_id = tokenizer.pad_token_id = 0
model.half()
_ = model.eval()

q = """
camne nak pakai numpy
"""
prompt = template["prompt_no_input"].format(instruction=q)

inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
    temperature=temperature,
    top_p=top_p,
    top_k=top_k,
    num_beams=num_beams,
)

with torch.no_grad():
    generation_output = model.generate(
      input_ids=input_ids,
      return_dict_in_generate=True,
      output_scores=True,
      max_new_tokens=max_new_tokens,
      temperature=temperature,
      top_p=top_p,
      top_k=top_k,
      num_beams=num_beams,
    )
s = generation_output.sequences[0]
output = tokenizer.decode(s)

output,

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

camne nak pakai numpy


### Response:
Untuk menggunakan Numpy dalam Python, anda boleh menggunakan kod berikut:

import numpy as np

x = np.array([1, 2, 3, 4, 5])
print(x)

Ini akan mengembalikan array `[1, 2, 3, 4, 5]`.<|endoftext|>
Downloads last month
0
Hosted inference API

Unable to determine this model’s pipeline type. Check the docs .