--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: my_awesome_mind_model results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.13274336283185842 --- # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.5524 - Accuracy: 0.1327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 5 - eval_batch_size: 15 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.612 | 0.98 | 22 | 2.6169 | 0.0796 | | 2.5848 | 2.0 | 45 | 2.6012 | 0.1239 | | 2.5441 | 2.98 | 67 | 2.5818 | 0.1239 | | 2.5076 | 4.0 | 90 | 2.5631 | 0.1416 | | 2.4494 | 4.89 | 110 | 2.5524 | 0.1327 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.2.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.3