---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: example.pkl
widget:
structuredData:
'Unnamed: 32':
- .nan
- .nan
- .nan
area_mean:
- 481.9
- 1130.0
- 748.9
area_se:
- 30.29
- 96.05
- 48.31
area_worst:
- 677.9
- 1866.0
- 1156.0
compactness_mean:
- 0.1058
- 0.1029
- 0.1223
compactness_se:
- 0.01911
- 0.01652
- 0.01484
compactness_worst:
- 0.2378
- 0.2336
- 0.2394
concave points_mean:
- 0.03821
- 0.07951
- 0.08087
concave points_se:
- 0.01037
- 0.0137
- 0.01093
concave points_worst:
- 0.1015
- 0.1789
- 0.1514
concavity_mean:
- 0.08005
- 0.108
- 0.1466
concavity_se:
- 0.02701
- 0.02269
- 0.02813
concavity_worst:
- 0.2671
- 0.2687
- 0.3791
fractal_dimension_mean:
- 0.06373
- 0.05461
- 0.05796
fractal_dimension_se:
- 0.003586
- 0.001698
- 0.002461
fractal_dimension_worst:
- 0.0875
- 0.06589
- 0.08019
id:
- 87930
- 859575
- 8670
perimeter_mean:
- 81.09
- 123.6
- 101.7
perimeter_se:
- 2.497
- 5.486
- 3.094
perimeter_worst:
- 96.05
- 165.9
- 124.9
radius_mean:
- 12.47
- 18.94
- 15.46
radius_se:
- 0.3961
- 0.7888
- 0.4743
radius_worst:
- 14.97
- 24.86
- 19.26
smoothness_mean:
- 0.09965
- 0.09009
- 0.1092
smoothness_se:
- 0.006953
- 0.004444
- 0.00624
smoothness_worst:
- 0.1426
- 0.1193
- 0.1546
symmetry_mean:
- 0.1925
- 0.1582
- 0.1931
symmetry_se:
- 0.01782
- 0.01386
- 0.01397
symmetry_worst:
- 0.3014
- 0.2551
- 0.2837
texture_mean:
- 18.6
- 21.31
- 19.48
texture_se:
- 1.044
- 0.7975
- 0.7859
texture_worst:
- 24.64
- 26.58
- 26.0
---
# Model description
[More Information Needed]
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|--------------------------|-----------------------------------------------------------------------------------------------|
| memory | |
| steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
| verbose | False |
| imputer | SimpleImputer() |
| scaler | StandardScaler() |
| model | LogisticRegression() |
| imputer__add_indicator | False |
| imputer__copy | True |
| imputer__fill_value | |
| imputer__missing_values | nan |
| imputer__strategy | mean |
| imputer__verbose | 0 |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| model__C | 1.0 |
| model__class_weight | |
| model__dual | False |
| model__fit_intercept | True |
| model__intercept_scaling | 1 |
| model__l1_ratio | |
| model__max_iter | 100 |
| model__multi_class | auto |
| model__n_jobs | |
| model__penalty | l2 |
| model__random_state | |
| model__solver | lbfgs |
| model__tol | 0.0001 |
| model__verbose | 0 |
| model__warm_start | False |
Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])
SimpleImputer()
StandardScaler()
LogisticRegression()