--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a picture of minifigure tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - merve/lego-lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a picture of minifigure using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) You can use this code 👇 ```python from huggingface_hub.repocard import RepoCard from diffusers import DiffusionPipeline import torch lora_model_id = "merve/lego-lora-trained-xl" card = RepoCard.load(lora_model_id) base_model_id = card.data.to_dict()["base_model"] pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.load_lora_weights(lora_model_id) pipe("a picture of minifigure as lana del rey, high quality", num_inference_steps=35).images[0] ``` LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.