--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer metrics: - precision - recall model-index: - name: mT5_base results: [] --- # mT5_base This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4030 - Bleu Score: 45.1405 - Precision: 13.3811 - Recall: 13.3811 - Gen Len: 16.8196 - Err: 13.3811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err | |:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:| | 2.8374 | 1.0 | 838 | 0.5595 | 41.3763 | 7.1685 | 7.1685 | 16.7802 | 7.1685 | | 0.7564 | 2.0 | 1676 | 0.4503 | 44.4878 | 12.0669 | 12.0669 | 16.8124 | 12.0669 | | 0.6103 | 3.0 | 2514 | 0.4030 | 45.1405 | 13.3811 | 13.3811 | 16.8196 | 13.3811 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0