--- language: - mr license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Marathi - Megha Sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: None args: 'config: mr, split: test' metrics: - type: wer value: 44.723099735671454 name: Wer --- # Whisper Small Marathi - Megha Sharma This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2755 - Wer: 44.7231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0713 | 4.0650 | 1000 | 0.2755 | 44.7231 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1