--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-NER-finetuned-ner-ISU results: [] --- # bert-base-NER-finetuned-ner-ISU This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1090 - Precision: 0.9408 - Recall: 0.8223 - F1: 0.8776 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 48 | 0.1411 | 0.8970 | 0.7840 | 0.8367 | 0.9473 | | No log | 2.0 | 96 | 0.1231 | 0.9453 | 0.7964 | 0.8645 | 0.9589 | | No log | 3.0 | 144 | 0.1090 | 0.9408 | 0.8223 | 0.8776 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6