mcdzwil commited on
Commit
5e003bf
1 Parent(s): 12337ba

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-base-NER-finetuned-ner-ISU
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-base-NER-finetuned-ner-ISU
19
+
20
+ This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1090
23
+ - Precision: 0.9408
24
+ - Recall: 0.8223
25
+ - F1: 0.8776
26
+ - Accuracy: 0.9644
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 48 | 0.1411 | 0.8970 | 0.7840 | 0.8367 | 0.9473 |
58
+ | No log | 2.0 | 96 | 0.1231 | 0.9453 | 0.7964 | 0.8645 | 0.9589 |
59
+ | No log | 3.0 | 144 | 0.1090 | 0.9408 | 0.8223 | 0.8776 | 0.9644 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.17.0
65
+ - Pytorch 1.10.0+cu111
66
+ - Datasets 1.18.3
67
+ - Tokenizers 0.11.6