import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, xavier_init from ..builder import NECKS @NECKS.register_module() class FPN(nn.Module): """Feature Pyramid Network. This is an implementation of - Feature Pyramid Networks for Object Detection (https://arxiv.org/abs/1612.03144) Args: in_channels (List[int]): Number of input channels per scale. out_channels (int): Number of output channels (used at each scale) num_outs (int): Number of output scales. start_level (int): Index of the start input backbone level used to build the feature pyramid. Default: 0. end_level (int): Index of the end input backbone level (exclusive) to build the feature pyramid. Default: -1, which means the last level. add_extra_convs (bool | str): If bool, it decides whether to add conv layers on top of the original feature maps. Default to False. If True, its actual mode is specified by `extra_convs_on_inputs`. If str, it specifies the source feature map of the extra convs. Only the following options are allowed - 'on_input': Last feat map of neck inputs (i.e. backbone feature). - 'on_lateral': Last feature map after lateral convs. - 'on_output': The last output feature map after fpn convs. extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs on the original feature from the backbone. If True, it is equivalent to `add_extra_convs='on_input'`. If False, it is equivalent to set `add_extra_convs='on_output'`. Default to True. relu_before_extra_convs (bool): Whether to apply relu before the extra conv. Default: False. no_norm_on_lateral (bool): Whether to apply norm on lateral. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Config dict for normalization layer. Default: None. act_cfg (str): Config dict for activation layer in ConvModule. Default: None. upsample_cfg (dict): Config dict for interpolate layer. Default: `dict(mode='nearest')` Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = FPN(in_channels, 11, len(in_channels)).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) """ def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, extra_convs_on_inputs=False, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, act_cfg=None, upsample_cfg=dict(mode='nearest')): super(FPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.relu_before_extra_convs = relu_before_extra_convs self.no_norm_on_lateral = no_norm_on_lateral self.fp16_enabled = False self.upsample_cfg = upsample_cfg.copy() if end_level == -1: self.backbone_end_level = self.num_ins assert num_outs >= self.num_ins - start_level else: # if end_level < inputs, no extra level is allowed self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.add_extra_convs = add_extra_convs assert isinstance(add_extra_convs, (str, bool)) if isinstance(add_extra_convs, str): # Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output' assert add_extra_convs in ('on_input', 'on_lateral', 'on_output') elif add_extra_convs: # True if extra_convs_on_inputs: # For compatibility with previous release # TODO: deprecate `extra_convs_on_inputs` self.add_extra_convs = 'on_input' else: self.add_extra_convs = 'on_output' self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(self.start_level, self.backbone_end_level): l_conv = ConvModule( in_channels[i], out_channels, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg if not self.no_norm_on_lateral else None, act_cfg=act_cfg, inplace=False) fpn_conv = ConvModule( out_channels, out_channels, 3, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) # add extra conv layers (e.g., RetinaNet) extra_levels = num_outs - self.backbone_end_level + self.start_level if self.add_extra_convs and extra_levels >= 1: for i in range(extra_levels): if i == 0 and self.add_extra_convs == 'on_input': in_channels = self.in_channels[self.backbone_end_level - 1] else: in_channels = out_channels extra_fpn_conv = ConvModule( in_channels, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, inplace=False) self.fpn_convs.append(extra_fpn_conv) # default init_weights for conv(msra) and norm in ConvModule def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m, distribution='uniform') def forward(self, inputs): assert len(inputs) == len(self.in_channels) # build laterals laterals = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): # In some cases, fixing `scale factor` (e.g. 2) is preferred, but # it cannot co-exist with `size` in `F.interpolate`. if 'scale_factor' in self.upsample_cfg: laterals[i - 1] += F.interpolate(laterals[i], **self.upsample_cfg) else: prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += F.interpolate( laterals[i], size=prev_shape, **self.upsample_cfg) # build outputs # part 1: from original levels outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) ] # part 2: add extra levels if self.num_outs > len(outs): # use max pool to get more levels on top of outputs # (e.g., Faster R-CNN, Mask R-CNN) if not self.add_extra_convs: for i in range(self.num_outs - used_backbone_levels): outs.append(F.max_pool2d(outs[-1], 1, stride=2)) # add conv layers on top of original feature maps (RetinaNet) else: if self.add_extra_convs == 'on_input': extra_source = inputs[self.backbone_end_level - 1] elif self.add_extra_convs == 'on_lateral': extra_source = laterals[-1] elif self.add_extra_convs == 'on_output': extra_source = outs[-1] else: raise NotImplementedError outs.append(self.fpn_convs[used_backbone_levels](extra_source)) for i in range(used_backbone_levels + 1, self.num_outs): if self.relu_before_extra_convs: outs.append(self.fpn_convs[i](F.relu(outs[-1]))) else: outs.append(self.fpn_convs[i](outs[-1])) return tuple(outs)