# pip install transformers from transformers import PretrainedConfig from typing import List ''' newtwork_config = { "epochs": 150, "batch_size": 250, "n_steps": 16, # timestep "dataset": "CAPS", "in_channels": 1, "data_path": "./data", "lr": 0.001, "n_class": 10, "latent_dim": 128, "input_size": 32, "model": "FSVAE" ,# FSVAE or FSVAE_large "k": 20, # multiplier of channel "scheduled": True, # whether to apply scheduled sampling "loss_func": 'kld', # mmd or kld "accum_iter" : 1, "devices": [0], } hidden_dims = [32, 64, 128, 256] ''' class FSAEConfig(PretrainedConfig): model_type = "fsae" def __init__( self, in_channels: int = 1, hidden_dims : List[int] = [32, 64, 128, 256], k : int = 20, n_steps : int = 16, latent_dim : int = 128, scheduled : bool = True, # loss_func : str = "kld", dt:float = 5, a:float = 0.25, aa: float = 0.5, Vth : float = 0.2, # しきい値電位 tau : float = 0.25, **kwargs, ): # if block_type not in ["basic", "bottleneck"]: # raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") # if stem_type not in ["", "deep", "deep-tiered"]: # raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.in_channels = in_channels self.hidden_dims = hidden_dims self.k = k self.n_steps = n_steps self.latent_dim = latent_dim self.scheduled = scheduled self.dt = dt self.a = a self.aa = aa self.Vth = Vth self.tau = tau super().__init__(**kwargs)