Synatra-7B-v0.3-dpo / README.md
maywell's picture
Update README.md
7aeb93d
|
raw
history blame
2.62 kB
metadata
license: cc-by-sa-4.0

Synatra-7B-v0.3-dpo๐Ÿง

Synatra-7B-v0.3-dpo

Support Me

์‹œ๋‚˜ํŠธ๋ผ๋Š” ๊ฐœ์ธ ํ”„๋กœ์ ํŠธ๋กœ, 1์ธ์˜ ์ž์›์œผ๋กœ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋งˆ์Œ์— ๋“œ์…จ๋‹ค๋ฉด ์•ฝ๊ฐ„์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์€ ์–ด๋–จ๊นŒ์š”? Buy me a Coffee

Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen

License

This model is strictly non-commercial (cc-by-sa-4.0) use, Under 5K MAU The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-sa-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. If your service has over 5K MAU contact me for license approval.

Model Details

Base Model
mistralai/Mistral-7B-Instruct-v0.1

Trained On
A100 80GB * 1

Instruction format

It follows ChatML format and Alpaca(No-Input) format.

Model Benchmark

KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT

EleutherAI/lm-evaluation-harness๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ BoolQ, SentiNeg, Wic์„ ์ธก์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.

| Model | COPA | HellaSwag | BoolQ | SentiNeg | --- | --- | --- | --- | --- | --- | EleutherAI/polyglot-ko-12.8b | 0.7937 | 0.5954 | 0.4818 | 0.9117 | Synatra-7B-v0.3-base | 0.6344 | 0.5140 | 0.5226 | NaN | Synatra-7B-v0.3-dpo | 0.6380 | 0.4780 | 0.8058 | 0.8942

Ko-LLM-Leaderboard

On Benchmarking...

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-dpo")

messages = [
    {"role": "user", "content": "๋ฐ”๋‚˜๋‚˜๋Š” ์›๋ž˜ ํ•˜์–€์ƒ‰์ด์•ผ?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])