--- tags: - merge - mergekit - lazymergekit - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v4.3 base_model: - paulml/OGNO-7B - bardsai/jaskier-7b-dpo-v4.3 license: apache-2.0 --- ![thumbnail](thumb.webp) # ramonda-7b-dpo-ties ramonda-7b-dpo-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B) * [bardsai/jaskier-7b-dpo-v4.3](https://huggingface.co/bardsai/jaskier-7b-dpo-v4.3) ## Benchmark [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |------------------------|--------:|-----:|----------:|-----:|-----------:|-----------:|------:| | mayacinka/ramonda-7b-dpo-ties | 76.19 | 72.7 | 89.69| 64.5 | 77.17 | 84.77 | 68.92| [LLM AutoEval](https://gist.github.com/majacinka/370282a808a21b28bacd2c76a998da8f) | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average | |----------------------|---------|---------|------------|----------|---------| | ramonda-7b-dpo-ties | 44.67 | 77.16 | 77.6 | 49.06 | 62.12 | ## 🧩 Configuration ```yaml models: - model: bardsai/jaskier-7b-dpo-v5.6 # no parameters necessary for base model - model: paulml/OGNO-7B parameters: density: 0.9 weight: 0.5 - model: bardsai/jaskier-7b-dpo-v4.3 parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: bardsai/jaskier-7b-dpo-v5.6 parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayacinka/ramonda-7b-dpo-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```