BRAG-v0.1
Collection
BRAG is a series of SLMs (Small Language Models) specifically trained for RAG tasks. We release models with size 1.5b, 7b and 8b.
•
4 items
•
Updated
•
12
BRAG-Qwen2-1.5b-v0.1 is part of the BRAG series of SLMs (Small Language Models), specifically trained for RAG (Retrieval-Augmented Generation) tasks, including:
1. RAG with tables and text.
2. RAG with conversational chat.
Authors: Pratik Bhavasar, Ravi Theja
BRAG-v0.1 Model Collection | Blog
Model Type | Model Name | Model Size | Context Length | ChatRAG-Bench (all) |
---|---|---|---|---|
LLM | Command-R-Plus | -- | 128k | 50.93 |
LLM | GPT-4-Turbo-2024-04-09 | -- | 128k | 54.03 |
SLM | ChatQA-1.5-8B | 8b | 8k | 55.17 |
BRAG SLM | BRAG-Qwen2-7b-v0.1 | 7b | 128k | 53.23 |
BRAG SLM | BRAG-Llama-3.1-8b-v0.1 | 8b | 128k | 52.29 |
BRAG SLM | BRAG-Llama-3-8b-v0.1 | 8b | 8k | 51.70 |
BRAG Ultra SLM | BRAG-Qwen2-1.5b-v0.1 | 1.5b | 32k | 46.43 |
Below is the message prompt format required for using the model.
messages = [
{"role": "system", "content": "You are an assistant who gives helpful, detailed, and polite answers to the user's questions based on the context with appropriate reasoning as required. Indicate when the answer cannot be found in the context."},
{"role": "user", "content": """Context: <CONTEXT INFORMATION> \n\n <USER QUERY>"""},
]
pipeline
API
import transformers
import torch
model_id = "maximalists/BRAG-Qwen2-1.5b-v0.1"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an assistant who gives helpful, detailed, and polite answers to the user's questions based on the context with appropriate reasoning as required. Indicate when the answer cannot be found in the context."},
{"role": "user", "content": """Context:\nArchitecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.\n\nTo whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?"""},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "maximalists/BRAG-Qwen2-1.5b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an assistant who gives helpful, detailed, and polite answers to the user's questions based on the context with appropriate reasoning as required. Indicate when the answer cannot be found in the context."},
{"role": "user", "content": """Context:\nArchitecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.\n\nTo whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?"""},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=256
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
The model is specifically trained for short contexts and may not perform well with longer ones. It has been fine-tuned on an English dataset. To avoid underperformance and the potential for hallucinations, please use the system prompt mentioned above.
To cite this model, please use the following:
@misc{BRAG-Qwen2-1.5b-v0.1,
title = {BRAG-Qwen2-1.5b-v0.1},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/maximalists/BRAG-Qwen2-1.5b-v0.1},
author = {Pratik Bhavsar and Ravi Theja}
}
For more details on the BRAG series and updates, please refer to the official blog.