--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert-sst2-sentiment results: [] datasets: - stanfordnlp/sst2 language: - en base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification --- # bert-sst2-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2764 - Accuracy: 0.9197 - F1: 0.9197 - Precision: 0.9201 - Recall: 0.9197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1654 | 1.0 | 1053 | 0.2157 | 0.9243 | 0.9243 | 0.9247 | 0.9243 | | 0.099 | 2.0 | 2106 | 0.2533 | 0.9197 | 0.9197 | 0.9197 | 0.9197 | | 0.0779 | 3.0 | 3159 | 0.2764 | 0.9197 | 0.9197 | 0.9201 | 0.9197 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.2.1+cu121 - Datasets 3.1.0 - Tokenizers 0.13.3