--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: convnextv2-tiny-1k-224-finetuned-galaxy10-decals results: [] --- # convnextv2-tiny-1k-224-finetuned-galaxy10-decals This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set: - Loss: 0.3993 - Accuracy: 0.8732 - Precision: 0.8714 - Recall: 0.8732 - F1: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.8139 | 0.99 | 62 | 1.6803 | 0.4628 | 0.4589 | 0.4628 | 0.3836 | | 1.0894 | 2.0 | 125 | 0.9304 | 0.6984 | 0.6965 | 0.6984 | 0.6800 | | 0.8423 | 2.99 | 187 | 0.6630 | 0.7880 | 0.7858 | 0.7880 | 0.7826 | | 0.6564 | 4.0 | 250 | 0.5769 | 0.8055 | 0.8091 | 0.8055 | 0.7970 | | 0.5927 | 4.99 | 312 | 0.5283 | 0.8241 | 0.8276 | 0.8241 | 0.8240 | | 0.5853 | 6.0 | 375 | 0.5106 | 0.8303 | 0.8342 | 0.8303 | 0.8237 | | 0.5757 | 6.99 | 437 | 0.4490 | 0.8540 | 0.8514 | 0.8540 | 0.8521 | | 0.5235 | 8.0 | 500 | 0.4651 | 0.8546 | 0.8578 | 0.8546 | 0.8536 | | 0.5166 | 8.99 | 562 | 0.4501 | 0.8563 | 0.8551 | 0.8563 | 0.8523 | | 0.486 | 10.0 | 625 | 0.4352 | 0.8647 | 0.8624 | 0.8647 | 0.8626 | | 0.4882 | 10.99 | 687 | 0.4296 | 0.8613 | 0.8594 | 0.8613 | 0.8597 | | 0.4426 | 12.0 | 750 | 0.4314 | 0.8579 | 0.8614 | 0.8579 | 0.8566 | | 0.457 | 12.99 | 812 | 0.4226 | 0.8641 | 0.8642 | 0.8641 | 0.8624 | | 0.4512 | 14.0 | 875 | 0.4319 | 0.8619 | 0.8653 | 0.8619 | 0.8591 | | 0.4059 | 14.99 | 937 | 0.4124 | 0.8692 | 0.8675 | 0.8692 | 0.8681 | | 0.4147 | 16.0 | 1000 | 0.3993 | 0.8732 | 0.8714 | 0.8732 | 0.8715 | | 0.3721 | 16.99 | 1062 | 0.4116 | 0.8636 | 0.8609 | 0.8636 | 0.8604 | | 0.3908 | 18.0 | 1125 | 0.4098 | 0.8675 | 0.8663 | 0.8675 | 0.8665 | | 0.3836 | 18.99 | 1187 | 0.4188 | 0.8670 | 0.8651 | 0.8670 | 0.8651 | | 0.3716 | 20.0 | 1250 | 0.4172 | 0.8681 | 0.8653 | 0.8681 | 0.8661 | | 0.3484 | 20.99 | 1312 | 0.4404 | 0.8653 | 0.8649 | 0.8653 | 0.8628 | | 0.3895 | 22.0 | 1375 | 0.4194 | 0.8698 | 0.8689 | 0.8698 | 0.8688 | | 0.3452 | 22.99 | 1437 | 0.4447 | 0.8630 | 0.8634 | 0.8630 | 0.8621 | | 0.341 | 24.0 | 1500 | 0.4253 | 0.8720 | 0.8722 | 0.8720 | 0.8712 | | 0.3481 | 24.99 | 1562 | 0.4325 | 0.8681 | 0.8656 | 0.8681 | 0.8658 | | 0.3115 | 26.0 | 1625 | 0.4340 | 0.8619 | 0.8609 | 0.8619 | 0.8603 | | 0.313 | 26.99 | 1687 | 0.4329 | 0.8653 | 0.8644 | 0.8653 | 0.8644 | | 0.3362 | 28.0 | 1750 | 0.4329 | 0.8653 | 0.8636 | 0.8653 | 0.8639 | | 0.3056 | 28.99 | 1812 | 0.4342 | 0.8658 | 0.8645 | 0.8658 | 0.8644 | | 0.3206 | 29.76 | 1860 | 0.4343 | 0.8664 | 0.8648 | 0.8664 | 0.8649 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1