--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 100.0 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3549 - Wer: 0.3827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4129 | 5.49 | 500 | 3.3224 | 1.0 | | 2.9323 | 10.98 | 1000 | 2.9128 | 1.0000 | | 1.6839 | 16.48 | 1500 | 0.7740 | 0.6854 | | 1.485 | 21.97 | 2000 | 0.5830 | 0.5976 | | 1.362 | 27.47 | 2500 | 0.4866 | 0.4905 | | 1.2752 | 32.96 | 3000 | 0.4240 | 0.4967 | | 1.1957 | 38.46 | 3500 | 0.3899 | 0.4258 | | 1.1646 | 43.95 | 4000 | 0.3597 | 0.4014 | | 1.1265 | 49.45 | 4500 | 0.3559 | 0.3829 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0