--- library_name: transformers language: - fa base_model: openai/whisper-large tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 metrics: - wer model-index: - name: Whisper large fa - marziye-A results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 15.0 type: mozilla-foundation/common_voice_15_0 config: fa split: None args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 19.74175831429967 --- # Whisper large fa - marziye-A This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 15.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1571 - Wer: 19.7418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.2189 | 0.1567 | 2000 | 0.2248 | 29.0575 | | 0.1972 | 0.3134 | 4000 | 0.2035 | 25.1376 | | 0.1906 | 0.4701 | 6000 | 0.1923 | 25.7159 | | 0.1595 | 0.6268 | 8000 | 0.1806 | 22.4166 | | 0.1747 | 0.7835 | 10000 | 0.1753 | 23.0041 | | 0.1744 | 0.9402 | 12000 | 0.1709 | 22.4932 | | 0.1357 | 1.0969 | 14000 | 0.1687 | 20.7782 | | 0.1345 | 1.2536 | 16000 | 0.1646 | 21.3221 | | 0.1362 | 1.4103 | 18000 | 0.1619 | 21.1082 | | 0.121 | 1.5670 | 20000 | 0.1601 | 20.3781 | | 0.1354 | 1.7237 | 22000 | 0.1587 | 19.8157 | | 0.122 | 1.8804 | 24000 | 0.1571 | 19.7418 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1