--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: srl_bert_advanced results: [] --- # srl_bert_advanced This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0972 - Precision: 0.7829 - Recall: 0.7799 - F1: 0.7814 - Accuracy: 0.9709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1663 | 1.0 | 1266 | 0.1156 | 0.7707 | 0.7248 | 0.7470 | 0.9669 | | 0.1124 | 2.0 | 2532 | 0.0972 | 0.7829 | 0.7799 | 0.7814 | 0.9709 | ### Framework versions - Transformers 4.39.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2