--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0053 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9231 | 3 | 0.1306 | 0.9318 | 0.9386 | 0.9318 | 0.9303 | | No log | 1.8462 | 6 | 0.0053 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.7692 | 9 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0353 | 4.0 | 13 | 0.0021 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0353 | 4.6154 | 15 | 0.0022 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1