# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch M-CTC-T model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ....activations import ACT2FN from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ....integrations.deepspeed import is_deepspeed_zero3_enabled from ....modeling_outputs import BaseModelOutput, CausalLMOutput from ....modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ....utils import logging from .configuration_mctct import MCTCTConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 _CONFIG_FOR_DOC = "MCTCTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large" _EXPECTED_OUTPUT_SHAPE = [1, 195, 1536] # CTC docstring _CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."' _CTC_EXPECTED_LOSS = 1885.65 MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "speechbrain/m-ctc-t-large", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct ] # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) class MCTCTConv1dSubsampler(nn.Module): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config): super().__init__() self.config = config self.glu_dim = config.conv_glu_dim self.dropout = nn.Dropout(config.conv_dropout) self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels if self.num_layers > 1: if config.conv_channels is None: raise ValueError( "Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution" " layers." ) self.mid_channels = config.conv_channels else: self.mid_channels = None self.out_channels = config.hidden_size * 2 # considering GLU halving self.kernel_size = config.conv_kernel self.stride = config.conv_stride # NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for # multiple layers of convolutions, but not sure if this model definition should just restrict it # to one layer. This becomes especially relevant when considering the padding like line 1 of forward(). self.conv_layers = nn.ModuleList( nn.Conv1d( self.in_channels if i == 0 else self.mid_channels[i], self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels, kernel_size=k, stride=self.stride[i], padding="valid", ) for i, k in enumerate(self.kernel_size) ) def forward(self, input_features): # NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if # there will be just one conv layer. padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3) input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0) hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time for conv in self.conv_layers: hidden_states = conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame return hidden_states class MCTCTEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.LayerNorm = MCTCTLayerNorm() self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward( self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_features) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MCTCTSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = config.attention_head_dim self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def reshape_fortran(self, x, shape): if len(x.shape) > 0: x = x.permute(*reversed(range(len(x.shape)))) return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape)))) def relative_position_embedding_rotate(self, scores): # NOTE: should re-evaluate whether this re-implementation was truly necessary # or the reason why my complete re-haul worked was due to some other part # of the code. Adding this and the reshape fortrain code seems very undesirable. scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4] batch, hidden_state, seq_len, heads = scores.shape # e.g. [10, 1853, 14, 4] scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1) # e.g. [10, 25942, 1, 4] scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads]) # e.g. [10, 25928, 1, 4] scores = scores[:, : (seq_len + hidden_state - 1) * seq_len] # e.g. [10, 1852, 14, 4] scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads]) halfpoint = hidden_state // 2 scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4] return scores.permute(0, 3, 1, 2) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # relative key position embeddings positional_embedding = self.distance_embedding.weight relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3)) relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores) attention_scores = attention_scores + relative_position_scores if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MCTCTLayerNorm(nn.Module): def __init__(self): super().__init__() self.singleton_weight = nn.Parameter(torch.ones(1)) self.singleton_bias = nn.Parameter(torch.zeros(1)) def forward(self, hidden_states): return (hidden_states * self.singleton_weight) + self.singleton_bias class MCTCTSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MCTCTAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MCTCTSelfAttention(config) self.output = MCTCTSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MCTCTIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class MCTCTOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MCTCTLayer(nn.Module): def __init__(self, config: MCTCTConfig): super().__init__() self.seq_len_dim = 1 self.chunk_size_feed_forward = config.chunk_size_feed_forward self.intermediate = MCTCTIntermediate(config) self.attention = MCTCTAttention(config) self.is_decoder = config.is_decoder self.output = MCTCTOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MCTCTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MCTCTConfig base_model_prefix = "mctct" main_input_name = "input_features" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MCTCTLayerNorm): module.singleton_weight.data.fill_(1.0) module.singleton_bias.data.zero_() if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ dilation = 1 for _, kernel_sz, stride in zip( range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride ): padding = kernel_sz // 2 input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1 input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] # subsampled_lengths = attention_mask.sum(-1) subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) bsz = attention_mask.size()[0] attention_mask = torch.zeros( (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (MCTCTEncoder)): module.gradient_checkpointing = value MCTCT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MCTCT_INPUTS_DOCSTRING = r""" Args: input_features (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class MCTCTEncoder(MCTCTPreTrainedModel): def __init__(self, config: MCTCTConfig): super().__init__(config) self.hidden_dropout_prob = config.hidden_dropout_prob self.layer_norm = MCTCTLayerNorm() self.conv = MCTCTConv1dSubsampler(config) self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, input_features: torch.Tensor, attention_mask: torch.Tensor, head_mask: torch.Tensor, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_features = self.layer_norm(input_features) inputs_embeds = self.conv(input_features) # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, " f"but it is for {head_mask.size()[0]}." ) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @add_start_docstrings( "The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.", MCTCT_START_DOCSTRING, ) class MCTCTModel(MCTCTPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = MCTCTEncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_features: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_features is None: raise ValueError("You have to specify input_features.") encoder_outputs = self.encoder( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", MCTCT_START_DOCSTRING, ) class MCTCTForCTC(MCTCTPreTrainedModel): def __init__(self, config): super().__init__(config) self.mctct = MCTCTModel(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = config.hidden_size self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_features: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mctct( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.ctc_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones(input_features.shape[:-1], dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )