# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CvT model.""" import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import logging from .configuration_cvt import CvtConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "CvtConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/cvt-13" _EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", # See all Cvt models at https://huggingface.co/models?filter=cvt ] @dataclass class BaseModelOutputWithCLSToken(ModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`): Classification token at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ last_hidden_state: torch.FloatTensor = None cls_token_value: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath class CvtDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class CvtEmbeddings(nn.Module): """ Construct the CvT embeddings. """ def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate): super().__init__() self.convolution_embeddings = CvtConvEmbeddings( patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding ) self.dropout = nn.Dropout(dropout_rate) def forward(self, pixel_values): hidden_state = self.convolution_embeddings(pixel_values) hidden_state = self.dropout(hidden_state) return hidden_state class CvtConvEmbeddings(nn.Module): """ Image to Conv Embedding. """ def __init__(self, patch_size, num_channels, embed_dim, stride, padding): super().__init__() patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.patch_size = patch_size self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding) self.normalization = nn.LayerNorm(embed_dim) def forward(self, pixel_values): pixel_values = self.projection(pixel_values) batch_size, num_channels, height, width = pixel_values.shape hidden_size = height * width # rearrange "b c h w -> b (h w) c" pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1) if self.normalization: pixel_values = self.normalization(pixel_values) # rearrange "b (h w) c" -> b c h w" pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width) return pixel_values class CvtSelfAttentionConvProjection(nn.Module): def __init__(self, embed_dim, kernel_size, padding, stride): super().__init__() self.convolution = nn.Conv2d( embed_dim, embed_dim, kernel_size=kernel_size, padding=padding, stride=stride, bias=False, groups=embed_dim, ) self.normalization = nn.BatchNorm2d(embed_dim) def forward(self, hidden_state): hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state) return hidden_state class CvtSelfAttentionLinearProjection(nn.Module): def forward(self, hidden_state): batch_size, num_channels, height, width = hidden_state.shape hidden_size = height * width # rearrange " b c h w -> b (h w) c" hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1) return hidden_state class CvtSelfAttentionProjection(nn.Module): def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"): super().__init__() if projection_method == "dw_bn": self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride) self.linear_projection = CvtSelfAttentionLinearProjection() def forward(self, hidden_state): hidden_state = self.convolution_projection(hidden_state) hidden_state = self.linear_projection(hidden_state) return hidden_state class CvtSelfAttention(nn.Module): def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token=True, **kwargs, ): super().__init__() self.scale = embed_dim**-0.5 self.with_cls_token = with_cls_token self.embed_dim = embed_dim self.num_heads = num_heads self.convolution_projection_query = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_q, stride_q, projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method, ) self.convolution_projection_key = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method ) self.convolution_projection_value = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method ) self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.dropout = nn.Dropout(attention_drop_rate) def rearrange_for_multi_head_attention(self, hidden_state): batch_size, hidden_size, _ = hidden_state.shape head_dim = self.embed_dim // self.num_heads # rearrange 'b t (h d) -> b h t d' return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3) def forward(self, hidden_state, height, width): if self.with_cls_token: cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1) batch_size, hidden_size, num_channels = hidden_state.shape # rearrange "b (h w) c -> b c h w" hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width) key = self.convolution_projection_key(hidden_state) query = self.convolution_projection_query(hidden_state) value = self.convolution_projection_value(hidden_state) if self.with_cls_token: query = torch.cat((cls_token, query), dim=1) key = torch.cat((cls_token, key), dim=1) value = torch.cat((cls_token, value), dim=1) head_dim = self.embed_dim // self.num_heads query = self.rearrange_for_multi_head_attention(self.projection_query(query)) key = self.rearrange_for_multi_head_attention(self.projection_key(key)) value = self.rearrange_for_multi_head_attention(self.projection_value(value)) attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale attention_probs = torch.nn.functional.softmax(attention_score, dim=-1) attention_probs = self.dropout(attention_probs) context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value]) # rearrange"b h t d -> b t (h d)" _, _, hidden_size, _ = context.shape context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim) return context class CvtSelfOutput(nn.Module): """ The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, embed_dim, drop_rate): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.dropout = nn.Dropout(drop_rate) def forward(self, hidden_state, input_tensor): hidden_state = self.dense(hidden_state) hidden_state = self.dropout(hidden_state) return hidden_state class CvtAttention(nn.Module): def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token=True, ): super().__init__() self.attention = CvtSelfAttention( num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token, ) self.output = CvtSelfOutput(embed_dim, drop_rate) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_state, height, width): self_output = self.attention(hidden_state, height, width) attention_output = self.output(self_output, hidden_state) return attention_output class CvtIntermediate(nn.Module): def __init__(self, embed_dim, mlp_ratio): super().__init__() self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio)) self.activation = nn.GELU() def forward(self, hidden_state): hidden_state = self.dense(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class CvtOutput(nn.Module): def __init__(self, embed_dim, mlp_ratio, drop_rate): super().__init__() self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim) self.dropout = nn.Dropout(drop_rate) def forward(self, hidden_state, input_tensor): hidden_state = self.dense(hidden_state) hidden_state = self.dropout(hidden_state) hidden_state = hidden_state + input_tensor return hidden_state class CvtLayer(nn.Module): """ CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps). """ def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, mlp_ratio, drop_path_rate, with_cls_token=True, ): super().__init__() self.attention = CvtAttention( num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token, ) self.intermediate = CvtIntermediate(embed_dim, mlp_ratio) self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate) self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_before = nn.LayerNorm(embed_dim) self.layernorm_after = nn.LayerNorm(embed_dim) def forward(self, hidden_state, height, width): self_attention_output = self.attention( self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention height, width, ) attention_output = self_attention_output attention_output = self.drop_path(attention_output) # first residual connection hidden_state = attention_output + hidden_state # in Cvt, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_state) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_state) layer_output = self.drop_path(layer_output) return layer_output class CvtStage(nn.Module): def __init__(self, config, stage): super().__init__() self.config = config self.stage = stage if self.config.cls_token[self.stage]: self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1])) self.embedding = CvtEmbeddings( patch_size=config.patch_sizes[self.stage], stride=config.patch_stride[self.stage], num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1], embed_dim=config.embed_dim[self.stage], padding=config.patch_padding[self.stage], dropout_rate=config.drop_rate[self.stage], ) drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])] self.layers = nn.Sequential( *[ CvtLayer( num_heads=config.num_heads[self.stage], embed_dim=config.embed_dim[self.stage], kernel_size=config.kernel_qkv[self.stage], padding_q=config.padding_q[self.stage], padding_kv=config.padding_kv[self.stage], stride_kv=config.stride_kv[self.stage], stride_q=config.stride_q[self.stage], qkv_projection_method=config.qkv_projection_method[self.stage], qkv_bias=config.qkv_bias[self.stage], attention_drop_rate=config.attention_drop_rate[self.stage], drop_rate=config.drop_rate[self.stage], drop_path_rate=drop_path_rates[self.stage], mlp_ratio=config.mlp_ratio[self.stage], with_cls_token=config.cls_token[self.stage], ) for _ in range(config.depth[self.stage]) ] ) def forward(self, hidden_state): cls_token = None hidden_state = self.embedding(hidden_state) batch_size, num_channels, height, width = hidden_state.shape # rearrange b c h w -> b (h w) c" hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1) if self.config.cls_token[self.stage]: cls_token = self.cls_token.expand(batch_size, -1, -1) hidden_state = torch.cat((cls_token, hidden_state), dim=1) for layer in self.layers: layer_outputs = layer(hidden_state, height, width) hidden_state = layer_outputs if self.config.cls_token[self.stage]: cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1) hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width) return hidden_state, cls_token class CvtEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.stages = nn.ModuleList([]) for stage_idx in range(len(config.depth)): self.stages.append(CvtStage(config, stage_idx)) def forward(self, pixel_values, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None hidden_state = pixel_values cls_token = None for _, (stage_module) in enumerate(self.stages): hidden_state, cls_token = stage_module(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None) return BaseModelOutputWithCLSToken( last_hidden_state=hidden_state, cls_token_value=cls_token, hidden_states=all_hidden_states, ) class CvtPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CvtConfig base_model_prefix = "cvt" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, CvtStage): if self.config.cls_token[module.stage]: module.cls_token.data = nn.init.trunc_normal_( torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range ) CVT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CVT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.", CVT_START_DOCSTRING, ) class CvtModel(CvtPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.encoder = CvtEncoder(config) self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCLSToken]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCLSToken( last_hidden_state=sequence_output, cls_token_value=encoder_outputs.cls_token_value, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, CVT_START_DOCSTRING, ) class CvtForImageClassification(CvtPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.cvt = CvtModel(config, add_pooling_layer=False) self.layernorm = nn.LayerNorm(config.embed_dim[-1]) # Classifier head self.classifier = ( nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.cvt( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_token = outputs[1] if self.config.cls_token[-1]: sequence_output = self.layernorm(cls_token) else: batch_size, num_channels, height, width = sequence_output.shape # rearrange "b c h w -> b (h w) c" sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1) sequence_output = self.layernorm(sequence_output) sequence_output_mean = sequence_output.mean(dim=1) logits = self.classifier(sequence_output_mean) loss = None if labels is not None: if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)