import argparse import os import copy import numpy as np import json import torch import torchvision from PIL import Image, ImageDraw, ImageFont import litellm # Grounding DINO import GroundingDINO.groundingdino.datasets.transforms as T from GroundingDINO.groundingdino.models import build_model from GroundingDINO.groundingdino.util import box_ops from GroundingDINO.groundingdino.util.slconfig import SLConfig from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # segment anything from segment_anything import build_sam, SamPredictor import cv2 import numpy as np import matplotlib.pyplot as plt # Tag2Text from ram.models import tag2text_caption from ram import inference_tag2text import torchvision.transforms as TS # ChatGPT or nltk is required when using captions # import openai # import nltk def load_image(image_path): # load image image_pil = Image.open(image_path).convert("RGB") # load image transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image_pil, image def generate_caption(raw_image, device): # unconditional image captioning if device == "cuda": inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) else: inputs = processor(raw_image, return_tensors="pt") out = blip_model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) return caption def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"): lemma = nltk.wordnet.WordNetLemmatizer() if openai_key: prompt = [ { 'role': 'system', 'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \ f'List the nouns in singular form. Split them by "{split} ". ' + \ f'Caption: {caption}.' } ] response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) reply = response['choices'][0]['message']['content'] # sometimes return with "noun: xxx, xxx, xxx" tags = reply.split(':')[-1].strip() else: nltk.download(['punkt', 'averaged_perceptron_tagger', 'wordnet']) tags_list = [word for (word, pos) in nltk.pos_tag(nltk.word_tokenize(caption)) if pos[0] == 'N'] tags_lemma = [lemma.lemmatize(w) for w in tags_list] tags = ', '.join(map(str, tags_lemma)) return tags def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"): object_list = [obj.split('(')[0] for obj in pred_phrases] object_num = [] for obj in set(object_list): object_num.append(f'{object_list.count(obj)} {obj}') object_num = ', '.join(object_num) print(f"Correct object number: {object_num}") if openai_key: prompt = [ { 'role': 'system', 'content': 'Revise the number in the caption if it is wrong. ' + \ f'Caption: {caption}. ' + \ f'True object number: {object_num}. ' + \ 'Only give the revised caption: ' } ] response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens) reply = response['choices'][0]['message']['content'] # sometimes return with "Caption: xxx, xxx, xxx" caption = reply.split(':')[-1].strip() return caption def load_model(model_config_path, model_checkpoint_path, device): args = SLConfig.fromfile(model_config_path) args.device = device model = build_model(args) checkpoint = torch.load(model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"): caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." model = model.to(device) image = image.to(device) with torch.no_grad(): outputs = model(image[None], captions=[caption]) logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) logits.shape[0] # filter output logits_filt = logits.clone() boxes_filt = boxes.clone() filt_mask = logits_filt.max(dim=1)[0] > box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 logits_filt.shape[0] # get phrase tokenlizer = model.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] scores = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") scores.append(logit.max().item()) return boxes_filt, torch.Tensor(scores), pred_phrases def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax, label): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) ax.text(x0, y0, label) def save_mask_data(output_dir, caption, mask_list, box_list, label_list): value = 0 # 0 for background mask_img = torch.zeros(mask_list.shape[-2:]) for idx, mask in enumerate(mask_list): mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 plt.figure(figsize=(10, 10)) plt.imshow(mask_img.numpy()) plt.axis('off') plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0) json_data = { 'caption': caption, 'mask':[{ 'value': value, 'label': 'background' }] } for label, box in zip(label_list, box_list): value += 1 name, logit = label.split('(') logit = logit[:-1] # the last is ')' json_data['mask'].append({ 'value': value, 'label': name, 'logit': float(logit), 'box': box.numpy().tolist(), }) with open(os.path.join(output_dir, 'label.json'), 'w') as f: json.dump(json_data, f) if __name__ == "__main__": parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True) parser.add_argument("--config", type=str, required=True, help="path to config file") parser.add_argument( "--tag2text_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument( "--grounded_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument( "--sam_checkpoint", type=str, required=True, help="path to checkpoint file" ) parser.add_argument("--input_image", type=str, required=True, help="path to image file") parser.add_argument("--split", default=",", type=str, help="split for text prompt") parser.add_argument("--openai_key", type=str, help="key for chatgpt") parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt") parser.add_argument( "--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" ) parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold") parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold") parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold") parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False") args = parser.parse_args() # cfg config_file = args.config # change the path of the model config file tag2text_checkpoint = args.tag2text_checkpoint # change the path of the model grounded_checkpoint = args.grounded_checkpoint # change the path of the model sam_checkpoint = args.sam_checkpoint image_path = args.input_image split = args.split openai_key = args.openai_key openai_proxy = args.openai_proxy output_dir = args.output_dir box_threshold = args.box_threshold text_threshold = args.text_threshold iou_threshold = args.iou_threshold device = args.device # ChatGPT or nltk is required when using captions # openai.api_key = openai_key # if openai_proxy: # openai.proxy = {"http": openai_proxy, "https": openai_proxy} # make dir os.makedirs(output_dir, exist_ok=True) # load image image_pil, image = load_image(image_path) # load model model = load_model(config_file, grounded_checkpoint, device=device) # visualize raw image image_pil.save(os.path.join(output_dir, "raw_image.jpg")) # initialize Tag2Text normalize = TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = TS.Compose([ TS.Resize((384, 384)), TS.ToTensor(), normalize ]) # filter out attributes and action categories which are difficult to grounding delete_tag_index = [] for i in range(3012, 3429): delete_tag_index.append(i) specified_tags='None' # load model tag2text_model = tag2text_caption(pretrained=tag2text_checkpoint, image_size=384, vit='swin_b', delete_tag_index=delete_tag_index) # threshold for tagging # we reduce the threshold to obtain more tags tag2text_model.threshold = 0.64 tag2text_model.eval() tag2text_model = tag2text_model.to(device) raw_image = image_pil.resize( (384, 384)) raw_image = transform(raw_image).unsqueeze(0).to(device) res = inference_tag2text(raw_image , tag2text_model, specified_tags) # Currently ", " is better for detecting single tags # while ". " is a little worse in some case text_prompt=res[0].replace(' |', ',') caption=res[2] print(f"Caption: {caption}") print(f"Tags: {text_prompt}") # run grounding dino model boxes_filt, scores, pred_phrases = get_grounding_output( model, image, text_prompt, box_threshold, text_threshold, device=device ) # initialize SAM predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device)) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) predictor.set_image(image) size = image_pil.size H, W = size[1], size[0] for i in range(boxes_filt.size(0)): boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 boxes_filt[i][2:] += boxes_filt[i][:2] boxes_filt = boxes_filt.cpu() # use NMS to handle overlapped boxes print(f"Before NMS: {boxes_filt.shape[0]} boxes") nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() boxes_filt = boxes_filt[nms_idx] pred_phrases = [pred_phrases[idx] for idx in nms_idx] print(f"After NMS: {boxes_filt.shape[0]} boxes") caption = check_caption(caption, pred_phrases) print(f"Revise caption with number: {caption}") transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) masks, _, _ = predictor.predict_torch( point_coords = None, point_labels = None, boxes = transformed_boxes.to(device), multimask_output = False, ) # draw output image plt.figure(figsize=(10, 10)) plt.imshow(image) for mask in masks: show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) for box, label in zip(boxes_filt, pred_phrases): show_box(box.numpy(), plt.gca(), label) plt.title('Tag2Text-Captioning: ' + caption + '\n' + 'Tag2Text-Tagging' + text_prompt + '\n') plt.axis('off') plt.savefig( os.path.join(output_dir, "automatic_label_output.jpg"), bbox_inches="tight", dpi=300, pad_inches=0.0 ) save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)