{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb279e52980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734799914862897651, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6mrw9+SS7UuoMO5+vqTy/Nlu8FDKRPQAAgD8AAIA/sxsYPSkMerpkyY27RKrQtneJCLuVtaU6AACAPwAAgD+ak9e8FLSDuogL3zqhYSU2EEmaOkt7ALoAAIA/AACAP2ZXRL2Pahu6hqkDOalTozOxpoG7MI4ZuAAAgD8AAIA/M3jJvPZcc7qy7QQ8/Hy5NR9HQDuHvbc0AACAPwAAgD8zO4o8CJLlPhgR973pho++Pz4Xvb1mT70AAAAAAAAAAObogr0pQGG6EnqdumCPhLUvxNM6+wm1OQAAgD8AAIA/TW4Cva6nmbgDlOs2MtMNMtAkmTvYchC2AACAPwAAgD9NIjY9rsGauop54jrmjYI1P1hCOtZ7AroAAIA/AACAP9rug71XpMI/fZLEvjz61T0I4QO9vsjavQAAAAAAAAAADRmJPSk8brpuW3o7QD2itTzx/TqmmJK6AACAPwAAgD9maoE8j0YVukgU1rt24eK1g29NOzacTzUAAIA/AACAP5oZ9jkUZIK6akQuupDJjjWQLZ06LgpHOQAAgD8AAIA/AKTVO9ezCrnXxry7tlAnth/FWTo+5po1AACAPwAAgD/NNFC8XO9hurYnpbl7gKO2jPULu1q7vTgAAIA/AACAPzOj07opbHq6/l2qukdHRLXSIiK7rO6wNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSFUJOWSlqMAWyUTegDjAF0lEdAkoJPdZaFEnV9lChoBkdAYxmTN+so2GgHTegDaAhHQJKH6vB7/n51fZQoaAZHQGR2NYKYzBRoB03oA2gIR0CSiRtmcvugdX2UKGgGR0BhK/NiYsunaAdN6ANoCEdAkouGfTTfBXV9lChoBkdAYtu5R0lqrWgHTegDaAhHQJKMQIu5BkZ1fZQoaAZHQGI7pd0JWvNoB03oA2gIR0CSkPPD50r9dX2UKGgGR0BlqlEb5uZUaAdN6ANoCEdAkpHSrHU+cHV9lChoBkdAN+KLKmsNlWgHTR4BaAhHQJKSVe3QUpN1fZQoaAZHQGVC1Iqbz9VoB03oA2gIR0CSk4JSzgMudX2UKGgGR0BmoAXhwVCYaAdN6ANoCEdAkphPub7TD3V9lChoBkdARtwkJKJ2uGgHS/VoCEdAkpjIZIg/1XV9lChoBkdAYfWYHgP3BmgHTegDaAhHQJKdGIYWLxZ1fZQoaAZHQGbzSowVTJhoB03oA2gIR0CSn1BzmwJPdX2UKGgGR0BlHvCbc45taAdN6ANoCEdAkqakIC2c8XV9lChoBkdAZJcmygPEsWgHTegDaAhHQJKnvQswtap1fZQoaAZHQGJXq0dBBzFoB03oA2gIR0CSuzMPz4DcdX2UKGgGR0BjQHNHH3lCaAdN6ANoCEdAksFseKbay3V9lChoBkdAW6biOvMbFWgHTegDaAhHQJLC52GIsRR1fZQoaAZHQE36TCcf/3poB0vuaAhHQJLHeYF7laN1fZQoaAZHQGBfi3gDRtxoB03oA2gIR0CS2y+so2GZdX2UKGgGR0BdIN8eCCjDaAdN6ANoCEdAktyM4LkS3HV9lChoBkdAYbJEy+HrQmgHTegDaAhHQJLfcpSaVlh1fZQoaAZHQGMYh9kSVW1oB03oA2gIR0CS5fJ1aGHpdX2UKGgGR0Bf9Sml67d0aAdN6ANoCEdAkubokeIVM3V9lChoBkdAXtubSZ0CBGgHTegDaAhHQJLnjJjlPrR1fZQoaAZHQGSDMrNGEwpoB03oA2gIR0CS6PinpB5YdX2UKGgGR0Bnwx1HOKO1aAdN6ANoCEdAku32DUVi4XV9lChoBkdAYxwKl54W12gHTegDaAhHQJLuW8Empl11fZQoaAZHQGVqIlMRHwxoB03oA2gIR0CS8dgPVd5ZdX2UKGgGR0BiH+rKeTV2aAdN6ANoCEdAkvN3OObRW3V9lChoBkdAQclYdQwbl2gHTQYBaAhHQJL3VlNDc/N1fZQoaAZHQGHB6FuejEhoB03oA2gIR0CS+mKU3XI2dX2UKGgGR0BfEdMPBi1BaAdN6ANoCEdAkvwA3HaN/HV9lChoBkdAY7xdO6/Zd2gHTegDaAhHQJMWcTXarWB1fZQoaAZHQGLs5BTn7pFoB03oA2gIR0CTF9mFrVOLdX2UKGgGR0Bhv4lhPTG6aAdN6ANoCEdAkxvtdmg8KXV9lChoBkdAO43+dbxEv2gHS/loCEdAkyb83AEdNnV9lChoBkdAZYWh5gPVeGgHTegDaAhHQJMq3P1L8Jl1fZQoaAZHQGePUuDjBEdoB03oA2gIR0CTLBalk6LgdX2UKGgGR0BkBugpSaVlaAdN6ANoCEdAky7U2DQJHHV9lChoBkdAZEtx+8XenGgHTegDaAhHQJM2t/0/W2B1fZQoaAZHQGXgf/WDpTxoB03oA2gIR0CTOBeUY8+zdX2UKGgGR0BlzXoHLRrraAdN6ANoCEdAkzj7pmmLtXV9lChoBkdAYVwanaWX1WgHTegDaAhHQJNBOFTNt651fZQoaAZHQGSY8KPXCj1oB03oA2gIR0CTQZ4FzMibdX2UKGgGR0BjMpGMGX5WaAdN6ANoCEdAk0VXQUpNK3V9lChoBkdAY7u8FINEw2gHTegDaAhHQJNHEmE4//x1fZQoaAZHQGe5d5hScb1oB03oA2gIR0CTS4niNsFddX2UKGgGR0BlHpAUtZmqaAdN6ANoCEdAk07ZLEk0JnV9lChoBkdAaDGADJU5uWgHTegDaAhHQJNQr4+KTB91fZQoaAZHQGZj/y5I6KdoB03oA2gIR0CTaZ8bJfY0dX2UKGgGR0BmWQ4OtnwoaAdN6ANoCEdAk3HLFfiPyXV9lChoBkdAY9aZccENfGgHTegDaAhHQJN+WE7GNrF1fZQoaAZHQGU72h7E5yVoB03oA2gIR0CTgjxKxs2vdX2UKGgGR0BmJORLbpNcaAdN6ANoCEdAk4OUvGp++nV9lChoBkdAYY0h2W6bv2gHTegDaAhHQJOGeBJ7LMd1fZQoaAZHQGAykU9IPLBoB03oA2gIR0CTjVGTs6aLdX2UKGgGR0Bh3tq1w5vMaAdN6ANoCEdAk45XPzFuN3V9lChoBkdAXztWilBQemgHTegDaAhHQJOO/RXwLE11fZQoaAZHQGEuZZbILgJoB03oA2gIR0CTle2Xb/OudX2UKGgGR0BhwnYWcjJNaAdN6ANoCEdAk5Zbc45tFnV9lChoBkdAZEvOuaF23mgHTegDaAhHQJOaYDvE0i11fZQoaAZHQGY4WX9itq5oB03oA2gIR0CTnMG3F1jidX2UKGgGR0BgmnPmgam5aAdN6ANoCEdAk6MtTHbRGHV9lChoBkdAZshsu3+db2gHTegDaAhHQJOnbBP9DQZ1fZQoaAZHQFxqNjLB9CxoB03oA2gIR0CTqSyZa3ZxdX2UKGgGR0BcROiN83MqaAdN6ANoCEdAk8E9CAtnPHV9lChoBkdAYtjP5YYBNmgHTegDaAhHQJPHcxSHdoF1fZQoaAZHQFriOJ+DvmZoB03oA2gIR0CT1s4qgAZLdX2UKGgGR0Bk+quB+WnkaAdN6ANoCEdAk9wNvn8sMHV9lChoBkdAaClO6/ZdwGgHTegDaAhHQJPdaXD3ueB1fZQoaAZHQGZuuTRplBhoB03oA2gIR0CT4Eh1klNUdX2UKGgGR0BeJxPwd8zAaAdN6ANoCEdAk+dKuwHJLnV9lChoBkdAZIsSdOIqLGgHTegDaAhHQJPobxhDw6R1fZQoaAZHQFqVnogV45doB03oA2gIR0CT6RZFXq7idX2UKGgGR0BjJZjtoi9qaAdN6ANoCEdAk+/MUAT7EnV9lChoBkdAZiuCgbp/w2gHTegDaAhHQJPwOADq4Yt1fZQoaAZHQGQPnZkCmuVoB03oA2gIR0CT8+RUFSsKdX2UKGgGR0Bka9ymygPFaAdN6ANoCEdAk/WmjXWe6XV9lChoBkdAY710o0ALiWgHTegDaAhHQJP6DCMxXXB1fZQoaAZHQGHNvUjLSu1oB03oA2gIR0CT/UbC79Q5dX2UKGgGR0BhnqL/CIk7aAdN6ANoCEdAk/7tn003wXV9lChoBkdAR2wpBomG/WgHS/poCEdAlBxCTyJ9A3V9lChoBkdAZHtWzWwu/WgHTegDaAhHQJQcqaF23a11fZQoaAZHQGEYrhzeXRhoB03oA2gIR0CUIZqYJE6UdX2UKGgGR0BMWW+GoJiRaAdNCQFoCEdAlCP4t6HCXXV9lChoBkdAQHBufmLcbmgHTSMBaAhHQJQm8Y1pCa91fZQoaAZHQGXVHCwbEP1oB03oA2gIR0CUK21Iy0rtdX2UKGgGR0BQ6a0IC2c8aAdNGQFoCEdAlCvoiosI3XV9lChoBkdAXSIVqN6w+2gHTegDaAhHQJQueo60Y0l1fZQoaAZHQGAR1fNRm9RoB03oA2gIR0CUL4cjZ+QVdX2UKGgGR0BtLls3yZrpaAdN1wNoCEdAlDDxNRFZxXV9lChoBkdAZugEcKgIyGgHTegDaAhHQJQ4YxM36yl1fZQoaAZHQGCf+umrKeVoB03oA2gIR0CUOa5qdpZfdX2UKGgGR0BgEJqj8DSxaAdN6ANoCEdAlDqMEA5q/XV9lChoBkdAZl2v3ai9I2gHTegDaAhHQJRDuxC6Ymd1fZQoaAZHQGFTjeTFERdoB03oA2gIR0CURDEmICU5dX2UKGgGR0Bi0Ae/5+H8aAdN6ANoCEdAlEfINutOmHV9lChoBkdAYhxw5vLowGgHTegDaAhHQJROJNKyv9t1fZQoaAZHQGDcLkKeCkJoB03oA2gIR0CUWgC2c8T0dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}