--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.37473189663977124 --- # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4346 - Wer: 0.3747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9005 | 4.26 | 400 | 0.6917 | 0.7251 | | 0.4032 | 8.51 | 800 | 0.4781 | 0.5286 | | 0.1863 | 12.77 | 1200 | 0.4682 | 0.4690 | | 0.1323 | 17.02 | 1600 | 0.4664 | 0.4483 | | 0.1014 | 21.28 | 2000 | 0.4500 | 0.4124 | | 0.0749 | 25.53 | 2400 | 0.4510 | 0.3909 | | 0.0568 | 29.79 | 2800 | 0.4346 | 0.3747 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3