--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/MiniLM-L12-H384-uncased model-index: - name: MiniLM-evidence-types results: [] --- # MiniLM-evidence-types This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the evidence types dataset. It achieved the following results on the evaluation set: - Loss: 1.8672 - Macro f1: 0.3726 - Weighted f1: 0.7030 - Accuracy: 0.7161 - Balanced accuracy: 0.3616 ## Training and evaluation data The data set, as well as the code that was used to fine tune this model can be found in the GitHub repository [BA-Thesis-Information-Science-Persuasion-Strategies](https://github.com/mariekevdh/BA-Thesis-Information-Science-Persuasion-Strategies) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.4106 | 1.0 | 250 | 1.2698 | 0.1966 | 0.6084 | 0.6735 | 0.2195 | | 1.1437 | 2.0 | 500 | 1.0985 | 0.3484 | 0.6914 | 0.7116 | 0.3536 | | 0.9714 | 3.0 | 750 | 1.0901 | 0.2606 | 0.6413 | 0.6446 | 0.2932 | | 0.8382 | 4.0 | 1000 | 1.0197 | 0.2764 | 0.7024 | 0.7237 | 0.2783 | | 0.7192 | 5.0 | 1250 | 1.0895 | 0.2847 | 0.6824 | 0.6963 | 0.2915 | | 0.6249 | 6.0 | 1500 | 1.1296 | 0.3487 | 0.6888 | 0.6948 | 0.3377 | | 0.5336 | 7.0 | 1750 | 1.1515 | 0.3591 | 0.6982 | 0.7024 | 0.3496 | | 0.4694 | 8.0 | 2000 | 1.1962 | 0.3626 | 0.7185 | 0.7314 | 0.3415 | | 0.4058 | 9.0 | 2250 | 1.3313 | 0.3121 | 0.6920 | 0.7085 | 0.3033 | | 0.3746 | 10.0 | 2500 | 1.3993 | 0.3628 | 0.6976 | 0.7047 | 0.3495 | | 0.3267 | 11.0 | 2750 | 1.5078 | 0.3560 | 0.6958 | 0.7055 | 0.3464 | | 0.2939 | 12.0 | 3000 | 1.5875 | 0.3685 | 0.6968 | 0.7062 | 0.3514 | | 0.2677 | 13.0 | 3250 | 1.6470 | 0.3606 | 0.6976 | 0.7070 | 0.3490 | | 0.2425 | 14.0 | 3500 | 1.7164 | 0.3714 | 0.7069 | 0.7207 | 0.3551 | | 0.2301 | 15.0 | 3750 | 1.8151 | 0.3597 | 0.6975 | 0.7123 | 0.3466 | | 0.2268 | 16.0 | 4000 | 1.7838 | 0.3940 | 0.7034 | 0.7123 | 0.3869 | | 0.201 | 17.0 | 4250 | 1.8328 | 0.3725 | 0.6964 | 0.7062 | 0.3704 | | 0.1923 | 18.0 | 4500 | 1.8788 | 0.3708 | 0.7019 | 0.7154 | 0.3591 | | 0.1795 | 19.0 | 4750 | 1.8574 | 0.3752 | 0.7031 | 0.7161 | 0.3619 | | 0.1713 | 20.0 | 5000 | 1.8672 | 0.3726 | 0.7030 | 0.7161 | 0.3616 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1