---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
---
# Margin-aware Preference Optimization for Aligning Diffusion Models without Reference
We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here](https://arxiv.org/abs/2406.06424).
## Developed by
* Jiwoo Hong* (KAIST AI)
* Sayak Paul* (Hugging Face)
* Noah Lee (KAIST AI)
* Kashif Rasul (Hugging Face)
* James Thorne (KAIST AI)
* Jongheon Jeong (Korea University)
## Dataset
This model was fine-tuned from [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on the [yuvalkirstain/pickapic_v2](mhttps://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset.
## Training Code
Refer to our code repository [here](https://github.com/mapo-t2i/mapo).
## Qualitative Comparison
## Results
Below we report some quantitative metrics and use them to compare MaPO to existing models:
Average score for Aesthetic, HPS v2.1, and PickScore
|
Aesthetic |
HPS v2.1 |
Pickscore |
SDXL |
6.03 |
30.0 |
22.4 |
SFTChosen |
5.95 |
29.6 |
22.0 |
Diffusion-DPO |
6.03 |
31.1 |
22.7 |
MaPO (Ours) |
6.17 |
31.2 |
22.5 |
We evaluated this checkpoint in the Imgsys public benchmark. MaPO was able to outperform or match 21 out of 25 state-of-the-art text-to-image diffusion models by ranking 7th on the leaderboard at the time of writing, compared to Diffusion-DPO’s 20th place, while also consuming 14.5% less wall-clock training time on adapting Pick-a-Pic v2. We appreciate the imgsys team for helping us get the human preference data.
The table below reports memory efficiency of MaPO, making it a better alternative for alignment fine-tuning of diffusion models:
Computational costs of Diffusion-DPO and MaPO
|
Diffusion-DPO |
MaPO (Ours) |
Time (↓) |
63.5 |
54.3 (-14.5%) |
GPU Mem. (↓) |
55.9 |
46.1 (-17.5%) |
Max Batch (↑) |
4 |
16 (×4) |
## Inference
```python
from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel
import torch
sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0"
vae_id = "madebyollin/sdxl-vae-fp16-fix"
unet_id = "mapo-t2i/mapo-beta"
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(unet_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(sdxl_id, vae=vae, unet=unet, torch_dtype=torch.float16).to("cuda")
prompt = "An abstract portrait consisting of bold, flowing brushstrokes against a neutral background."
image = pipeline(prompt=prompt, num_inference_steps=30).images[0]
```
For qualitative results, please visit our [project website](https://mapo-t2i.github.io/).
## Citation
```bibtex
@misc{hong2024marginaware,
title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference},
author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasul and James Thorne and Jongheon Jeong},
year={2024},
eprint={2406.06424},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```