--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 --- # Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here] (TODO). ## Developed by * Jiwoo Hong* (KAIST AI) * Sayak Paul* (Hugging Face) * Noah Lee (KAIST AI) * Kashif Rasul (Hugging Face) * James Thorne (KAIST AI) * Jongheon Jeong (Korea University) ## Dataset This model was fine-tuned from [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on the [yuvalkirstain/pickapic_v2](mhttps://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset. ## Training Code Refer to our code repository [here](https://github.com/mapo-t2i/mapo). ## Results Below we report some quantitative metrics and use them to compare MaPO to existing models:
Average score for Aesthetic, HPS v2.1, and PickScore
Aesthetic HPS v2.1 Pickscore
SDXL 6.03 30.0 22.4
SFTChosen 5.95 29.6 22.0
Diffusion-DPO 6.03 31.1 22.7
MaPO (Ours) 6.17 31.2 22.5
We evaluated this checkpoint in the Imgsys public benchmark. MaPO was able to outperform or match 21 out of 25 state-of-the-art text-to-image diffusion models by ranking 7th on the leaderboard at the time of writing, compared to Diffusion-DPO’s 20th place, while also consuming 14.5% less wall-clock training time on adapting Pick-a-Pic v2. We appreciate the imgsys team for helping us get the human preference data.
The table below reports memory efficiency of MaPO, making it a better alternative for alignment fine-tuning of diffusion models:
Computational costs of Diffusion-DPO and MaPO
Diffusion-DPO MaPO (Ours)
Time (↓) 63.5 54.3 (-14.5%)
GPU Mem. (↓) 55.9 46.1 (-17.5%)
Max Batch (↑) 4 16 (×4)
## Inference ```python from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel import torch sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0" vae_id = "madebyollin/sdxl-vae-fp16-fix" unet_id = "mapo-t2i/mapo-beta" vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16) unet = UNet2DConditionModel.from_pretrained(unet_id, torch_dtype=torch.float16) pipeline = DiffusionPipeline.from_pretrained(sdxl_id, vae=vae, unet=unet, torch_dtype=torch.float16).to("cuda") prompt = "An abstract portrait consisting of bold, flowing brushstrokes against a neutral background." image = pipeline(prompt=prompt, num_inference_steps=30).images[0] ``` For qualitative results, please visit our [project website](https://mapo-t2i.github.io/). ## Citation ```bibtex @misc{todo, title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference}, author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasuland James Thorne and Jongheon Jeong}, year={2024}, eprint={todo}, archivePrefix={arXiv}, primaryClass={cs.CV,cs.LG} } ```